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1 Introduction

Since the Great Recession and the global financial crisis, dramatic fiscal develop-
ments have brought renewed attention on the issue of public debt sustainability.
This issue has turned out to be of particular concern for several members of the
Euro Area, where the risk of a debt overhang has kicked in. The severe degree
of uncertainty surrounding the effects of fiscal actions calls for the development
of new tools of analysis that allow us to study the issue of the debt-to-GDP-ratio
control in a stochastic environment, and provide measures of fiscal resilience that
may come in handy as early warning indicators in the surveillance of fiscal im-
balances and as indicators of the soundness of fiscal policy packages. To this end
this paper proposes a continuous time stochastic model of debt where a budget
rule automatically triggers a correction mechanism of the primary surplus to the
debt-to-GDP ratio. The problem is that of a government wishing to narrow the
gap between the current level of debt ratio and a given target, while uncertainty
comes through shocks that may frustrate or magnify the effects of any fiscal in-
tervention, and thus the effective size of the primary surplus. In the attempt to
close the gap between the actual debt ratio and a given target, the government
faces a trade-off between the need of a strong fiscal reaction and the uncertainty
that the reaction itself may generate. In particular, the government follows a
fiscal rule that incorporates two components: (i) an endogenous component ac-
cording to which the government reacts to the rising of public debt by increasing
the primary surplus, (ii) an exogenous component reflecting budgetary shocks and
capturing interdependencies between the fiscal stance and other determinants of
debt accumulation, such as interest rates, GDP growth, expectations etc...

By relying on optimal control theory and applying the Hamilton-Jacobi-Bellman
equation, we show that under the optimal Markov control the relationship between
the primary surplus and the deviation of the debt-to-GDP ratio from its target
is linear. The reactivity of the primary surplus to the debt ratio is increasing in
the growth rate of GDP, but decreasing in the real interest rate bearing on debt
and in the degree of uncertainty surrounding the outcome of fiscal policies. Thus
the optimal correction rule prescribes a more vigourous fiscal consolidation effort
under favourable economic conditions.

Given the optimal control we propose two measures of fiscal resilience in the
presence of uncertainty. One measure simply refers to the time needed to reach
an expected debt ratio. Clearly, the larger the time interval necessary to close the
gap by a given amount, the lower the degree of fiscal resilience. Nonetheless, the
time necessary to close the gap will be affected by GDP growth, the rate of return
on debt, and the uncertainty surrounding the effects of fiscal policy.

The second measure of fiscal resilience refers to the probability that the public-
debt ratio is on the right path towards a fiscal consolidation objective. This
probability relies on the concept of harmonic measure, describing the probability
distribution of the debt ratio as it hits the boundary of a given open interval.1

1The theory of harmonic measure has been extensively used in several applications, such as
the corona problem and in mapping problems. It has particularly interesting applications in
probability theory, especially in relation to Brownian motions. See Garnett and Marshall (2005)
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The idea is that of seeing whether the debt ratio bends towards a target or not. In
a way, it can be interpreted as an index of vulnerability to potential shocks that
may undermine the capability to be on a stable trajectory. As far as we know we
are the first to employ an approach based on a harmonic measure to construct a
measure of fiscal resilience.

We argue that both the proposed measures of fiscal resilience may be fruitfully
used as indicators of the goodness of a fiscal package and as pre-alert indicators
of fiscal imbalances.

Our paper contributes to the literature that applies optimal control theory to
public debt management in a stochastic environment. This methodology allows
us to rigorously include random components in the policy action and assess the
benefits and the costs of fiscal interventions under external shocks.2 In this respect,
we seek to contribute to this literature by providing a theoretical background for
debt reduction policies under uncertainty based on an optimising set-up. We also
show how this methodology can be used to assess fiscal resilience, meant as the
capability to withstand changes under the optimal control.

The closest predecessors of our paper are those dealing with stochastic control
problems of the debt-to-GDP ratio. In particular, Ferrari (2018) explores the case
of a government whose objective is that of reducing the debt-to-GDP ratio through
the minimization of two opposing costs, namely the expected opportunity cost of
having debt on the one hand, and the expected cost from the reduction policy
on the other hand. In more detail, Ferrari (2018) shows that the solution of the
control problem is related to that of an auxiliary optimal stopping problem. Put it
differently, dealing with the optimal stopping problem is equivalent to work out the
solution of the corresponding control problem. In conclusion, the optimal policy
is found to be that of keeping the debt-to-GDP ratio under an inflation-dependent
ceiling. Ferrari and Rodosthenous (2018) introduce the problem of a government
managing the debt-to-GDP ratio in a stochastic continuous time model where
uncertainty comes through a macroeconomic risk process affecting the interest
rate bearing on public debt. The exogenous risk process is modelled as N-state
continuous-time Markov chain, while the government faces a trade-off between the
potential benefits from high public investments and the costs deriving from having
an excessive debt ratio and austerity policies. At the optimum the government
would keep the debt ratio in an interval whose boundaries depend on the possible
states of the Markov process. Callegaro et al. (2019) study the problem of a
government aiming at reducing the debt ratio under partial information where the
underlying macroeconomic conditions are not directly observed.

for a survey of the theory and applications concerning this measure.
2In the last decades debt sustainability analysis has evolved to account for uncertainty. This

strand of literature, mostly developed at institutional level and within international organi-
zations, explicitly accounts for the fact that fiscal solvency and debt behaviour depend on the
future dynamics of economic fundamentals that are not known for sure (e.g. Berti 2013, Rozenov
2017 and Cherif and Hasanov 2018), highlights the importance of designing fiscal rules that are
truly operational (see Eyraud et al. 2018), and proposes methods to quantify the fiscal stress
(e.g. Balducci et al. 2011 and Pamies Sumner and Berti 2017) and the fiscal space (Ghosh et al.
2013).
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Cadenillas and Huamán-Aguilar (2016) develop a stochastic debt control model
to find the optimal ceiling for the government debt. As in Ferrari (2018) the
government objective is that of minimising the trade-off between the opportunity
cost of having debt and the cost from arising from its reduction. Cadenillas and
Huamán-Aguilar (2016) obtain a closed-form solution for the optimal government
debt ceiling and find that the fiscal policy will be active if the debt-to-GDP ratio is
greater than the optimal debt ceiling, while a passive fiscal policy will be desirable
if debt is lower than the ceiling. The model is also extended to account for the
link between debt and economic growth.3 In a subsequent paper Cadenillas and
Huamán-Aguilar (2018) study the optimal debt ceiling accounting for the fact that
the ability of the government to reduce its debt ratio is bounded.

Starting from these contributions we solve a stochastic control problem to find
the optimal corrective action of primary surplus to changes in the debt-to-GDP
ratio. The novelty of our paper is twofold.

First, in our setup the aim of the government is that of minimising the cost
of having a debt higher than a given target. In pursuing this fiscal sustainability
objective the government follows a reaction rule according to which the size of the
corrective measures depends upon the distance between the actual debt-to-GDP
ratio and its target.4 However, the effective size of the primary surplus may be
affected by shocks. Uncertainty affects the effective size of the fiscal policy and
thus the effectiveness of debt-reduction policies.

Second, we assess the properties of the optimal stochastic control in terms of
fiscal resilience. This is useful to single out the role of uncertainty in setting the op-
timal control and identify the major factors that may undermine the achievement
of the target.5

The remainder of the paper is structured as follows. Section 2 lays out the
model. Section 3 introduces and solves the optimisation problem of the govern-
ment. Section 4 presents two measures of resilience of the optimal policy. Section
5 presents concluding remarks.

2 The Model Setup

A simple starting point for the formal discussion of public finances is the flow
budget constraint of the government which dictates that the next period debt is

3In a previous contribution Huamán-Aguilar and Cadenillas (2015) propose a stochastic model
for government debt control under the assumption that debt may also be issued in foreign
currency. They show that for high debt aversion and exchange rate uncertainty, it is optimal
to reduce the share of the debt burden denominated in foreign currency in favour of domestic
currency.

4For a study in which the objective of the government is, instead, that of keeping the level
of output closer to a reference value in the attempt of stabilizing the economy over the business
cycle, see Correani et al. (2014), who use optimal control theory and apply the Hamilton-Jacobi-
Bellman equation in a stochastic IS-LM model.

5The fiscal resilience measures we propose in this paper do not cover all the possible metrics
recognised in the related literature. See Alessi et al. (2018) for a wide-ranging analysis of the
resilience of European countries.
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given by the current period debt minus the primary surplus (government revenues
minus expenditures excluding interest payments) times a gross interest factor.
Following Bohn (1998) this relationship can be easily written in terms of GDP
share as follows:

Bt+1 =
1 + r

1 + g
(Bt − St), (1)

where B is the the stock of public debt as a proportion of GDP, S is the primary
surplus-GDP ratio, r denotes the average effective interest, supposed constant, on
government debt, and g is the average (trend) growth rate of GDP.6

By making use of the approximation 1+r
1+g

≈ 1 + r − g, equation (1) can be
equivalently expressed in terms of deviations of the debt-GDP ratio from a generic
debt target, say B, as follows:

Xt+1 = (Xt − Zt)(1 + α). (2)

where Xt = Bt − B is the debt-GDP ratio deviation from its target, α = r − g
and Zt = St − αB/(1 + α) is the primary surplus (as ratio of GDP) scaled down
by a constant factor. The term α then reflects market fundamentals.

The continuous time counterpart of equation (2) is as follows:

dXt = αXtdt − (1 + α)dvt, (3)

where dXt is the differential of Xt and vt is the cumulative primary surplus up to
time t expressed as a proportion of the GDP.

We assume that the behaviour of the primary surplus is described by a debt-
based reaction rule adjusted for uncertainty. In particular, we focus on a reaction
rule to the debt-GDP deviation from the target of the form:

dvt = ρtXtdt + σρtXtdWt, (4)

where ρt is the government control variable measuring the strength of the primary
surplus response to the debt ratio gap Xt; σ represents the diffusion coefficient
meant to transmit uncertainty to the response action of policy makers; Wt is a
one-dimensional Brownian motion with zero mean and density function given by
a Gaussian exponential law of the type:

Wt ∼ e−
y

2

2t√
2πt

. (5)

Based on this feedback rule, the government undertakes corrective measures
whose size depends upon the gap between the debt ratio and its target.7 However,
the effective size of the fiscal action may be affected by shocks. Similarly to
Leeper (1991), we consider a fiscal reaction rule adjusted for a random error so as

6According to (1) interest payments on the outstanding debt are made at the end of period. If
a government borrows at an interest rate that exceeds the growth rate of the economy, continuing
surpluses will be needed to avoid an explosive debt path.

7The rule prescribes a response of the primary surplus ratio to changes in the debt ratio in
the spirit of Bohn (1995, 1998).
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to capture various non-modelled sources of uncertainty.8 The first term in (4) pins
down the structural component of the fiscal reaction function and measures the
response of the government to the debt-GDP ratio deviation from its target.9 The
second term in (4) captures the uncertainty that may surround the final outcome of
any fiscal intervention and is related to the macroeconomic effects of fiscal policy.
This second term is a sort of ‘catch-all’ stochastic component reflecting the shocks
that may hit the economy and any other unpredictable dynamics stemming from
fiscal actions or the political decision process. Clearly, this stochastic component
affects the effective size of the primary surplus ratio. However, differently from
Leeper (1991), we assume that the volatility of the random component in the
debt rule (4) is time varying, and its size of depends on the size of the structural
component itself.10

This uncertainty may originate from several factors and macroeconomic in-
terdependency mechanisms.11 An excessive surplus correction may give rise to
distributional consequences and social tensions if it entails cuts of spending on
welfare such as pensions and health care. Reduction of debt through cuts of
these items may be very unpopular and costly to policymakers, pushing towards
a downward revision of the initial corrective plan. This change of incentives will
give rise to a negative shock in (4). Besides, an ambitious fiscal consolidation plan
may deteriorate economic conditions to such an extent that tax revenues decline
and social spending increases, partially frustrating the initial correction. This
self-defeating mechanism of the corrective measure may thus lead to a negative
shock.12 Similarly, a strong corrective fiscal intervention may undermine growth
prospects, pushing private investors to cut down their investment plans, leading
to a knock-on effect to the level of economic activity and thus to the debt-to-GDP
ratio. Different beliefs about the type of fiscal consolidation may give rise to waves
of optimism that may improve the performance of the consolidation itself or, al-
ternatively, to waves pessimism that may magnify the contractionary effects the
ongoing specific fiscal plan.13

8Actually Leeper (1991) considers a fiscal rule consisting of a systematic response of taxation
to government debt plus a random shock. For an empirical analysis on fiscal reaction function
incorporating volatility of the fiscal stance, see e.g. Anzuini et al. (2017).

9It should be noted when the target is reached (i.e. Xt = 0), the rule prescribes a balanced-
budget rule with primary surplus covering interest payments on debt.

10As in Anzuini et al. (2017) we then assume that the volatility of the random component is
time varying. From an econometric point of view rule (4) reflects the existence of endogeneity.
For other relevant contributions on fiscal uncertainty shocks, see Born and Pfeifer (2014) and
Fernández-Villaverde et al. (2015).

11See also Balibek and Köksalan (2010) for a model of debt management taking into account
the uncertainty concerning the future state of the economy.

12See DeLong et al. (2012). According to empirical evidence, fiscal multipliers are large during
recessions and small when the economy operates close to potential. See Auerbach and Gorod-
nichenko (2012) and Corsetti et al. (2013). On the positive effects of fiscal expansion see e.g.
Blanchard and Perotti (2002).

13The effects of fiscal actions also depend on the underlying monetary-fiscal policy regime,
on expectations about future regimes and on the credibility of an announced fiscal plan. All
these factors are not directly controlled by policymakers. In this respect, for a comprehensive
discussion on how ”darned hard” fiscal analysis is, see Leeper (2015).
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However, debt reduction may be also conducive to positive shocks. Indeed,
a surplus correction may increase the confidence of private investors, so that we
may observe a positive effect on the surplus ratio. Further, possible non-Keynesian
effects of fiscal policy may give rise to beneficial effects on the budget balance by
magnifying the effects of a fiscal intervention. A credible fiscal consolidation plan
can signal future reductions of taxes and, therefore, an increase in permanent
income, producing an increase in private consumption. Private investments may
also respond positively, via the interest rate channel or an expected lower tax
burden in the future.14 Non-Keynesian effects of fiscal policy could then account
for positive shocks. However, as shown by Botta (2018), the circumstances under
which austerity may be expansionary are very fragile.

In general, the stochastic component in (4) may reflect a sort of control error
in the policy implementation. The idea is that policymakers can control their
instruments only up to a random error. Overall, according to (4) in the attempt
to close the gap between the actual debt ratio and a given target, policymakers
must strike a balance between the need of a strong action and the uncertainty
that the action itself may magnify. This trade-off fades away when the debt gets
closer to the target.

To scrutinise how the debt accumulation (4) works in the presence of a stochas-
tic term, we substitute the fiscal rule (4) into equation (3) and obtain:

dXt = [α − (1 + α)ρt]Xtdt − σ(1 + α)ρtXtdWt. (6)

The variable described by equation (6) is an Itô process with a unique solution,
since it satisfies the two conditions for the existence and uniqueness of the solution.
For more details about these conditions, see Øksendal (2003).

The stochastic integral component ρtXtdWt in the debt dynamics thus repre-
sents the fact that the debt ratio can increase (or decrease) due to some factors
that are beyond the control of the government. Thus, when the government is
faced with a high public debt load two effects are in place. First, by means of
the deterministic term in (4), the government is able to push the debt-GDP ratio
down. In this case the magnitude of the reaction will depend on the specific set-
ting of ρt. Second, the higher ρt, the more extensive the propagation mechanism
of uncertainty through the stochastic term.

We now shortly discuss some of the mathematical features underlying equation
(6). The intent is twofold: to clarify the mathematical notation of the text and
define precisely the control variable. Since for every t we have a random control
variable which the random variable Xt depends upon, we consider a complete
probability space Ω with filtration (Ω, F , {Ft}t≥0,P), where the filtration Ft is
the one generated by the standard one-dimensional Brownian motion Wt and is
augmented by P-null sets, that is

Ft = σ
(

Ws, 0 ≤ s ≤ t
)

∪
{

A ∈ F |P(A) = 0
}

, ∀ t ≥ 0. (7)

Moreover, we assume that X0 is an integrable random variable with law π0

and measurable with respect to F0 representing the initial value of the current

14See e.g. Giavazzi and Pagano (1990) and Alesina and Ardagna (2013).
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debt-to-output ratio gap. For the sake of simplicity, we assume that at the time
0 the debt-ratio gap is deterministic, so that X0 = x is a constant with x > 0.

The control variable ρt = ρ(t, ω) is taken from a given family A of admissible
controls:

A :=
{

ρt = ρ(t, Xt(ω)) for some Borel-measurable

bounded functions ρ : [0, T ] × [0, x̄] −→ [0, ρ̄]
} (8)

and is adapted to the filtration (7).
At time t the value of the function ρ(t, Xt) only depends on the state of the

system at that time, thus it does not depend on the probability space ω explicitly,
but only through the process Xt. Such a ρ is called Markov control and the
corresponding process Xt becomes an Itô diffusion, in particular a Markov process
(see Øksendal 2003, section 11.1). For further technical details and definitions,
see Appendix A.

3 The Optimisation Problem

In this Section we consider the problem of a government aiming at keeping the
current level of debt ratio as close as possible to the reference value B. Moreover,
the fiscal authority is assumed to have always access to the available policy tool
ρ, that is the strength of the primary surplus response to the debt ratio gap.
The government is assumed to be increasingly worse-off the larger the debt ratio
deviations from the target. The idea is that the government faces an instantaneous
loss related the rising of the public debt ratio. Notably, a large public debt may
crowd out private investment undermining growth prospects.15 In addition one of
the potential effects associated with a rising public debt is that of an increase in
the perceived risk that a country may default on its debt. This change in market
sentiments may push an economy towards a bad equilibrium through self-fulfilling
upward effects on yields and debt may become unsustainable. Moreover, since the
unpleasant arithmetic of Sargent and Wallace (1981) it has been well known that
it is impossible for a monetary authority to sustain low inflation in the presence
of excessive public debt and profligate fiscal policy. Finally, the implementation
of restrictive fiscal policies in response to an increase in the debt ratio may hinder
growth, especially during a recession (see DeLong et al. 2012).

This assumption translates in a quadratic expected loss function JT of the
type:

JT = E
[

(XT )2
]

≡
∫

Ω
(XT )2 dP, (9)

where XT is the stochastic level of debt ratio gap at time T and E denotes the
expectation value with respect to the probability law of X, that is with respect to

15There is a quite vast empirical literature which shows that there is a negative correlation
between public debt and economic growth (see e.g. Reinhart and Rogoff 2010, Woo and Kumar
2015). Yet, the casual interpretation of the correlation is an open issue since there might be
cases in which causation goes from low growth to high debt, rather than the other way round.
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the probability measure P. The time T is the exit time of the process Xt from its
interval [0, x̄] introduced in (8), that is it yields

T = inf
t

{t > 0 such that Xt 6 0}, (10)

with E [T ] < ∞.
As usual in the dynamic programming literature, we now let the controlled

diffusion X start at time s from level x > 0, that is










dXs,x
t = [αXt−s − (1 + α)ρt−sXt−s] dt − σ(1 + α)ρt−sXt−sdWt−s,

sub Xs,x
t = x.

(11)

The optimization problem now reads:

φ(s, x) = inf
ρ∈A

E
[

(Xs,x
T )2

]

, (12)

where φ(s, x) denotes the value function. To solve the system, we use the Hamilton-
Jacobi-Bellman (HJB) equation.16

Nevertheless, to apply the HJB method we have to preliminarily transform the
mean value JT , given in (9), into the mean value of an integral by relying on the
Dynkin’s formula. For more details about the HJB equation and the Dynkin’s
formula, see Appendix B. According to the Dynkin’s formula the mean value JT ,
given in (9), reads, for Xs,x

t−s ≡ Xt−s

J(s, x; ρ) = x2 + E

[

∫ T

s
{[αXt−s − (1 + α)ρt−sXt−s](2Xt−s) +

+ σ2(1 + α)2ρ2
t−sX

2
t−s

}

dt
]

,

(13)

where T is the stopping time introduced in (10). By virtue of the invariance of the
problem under time translation (that is, the homogeneous problem over time), we
can rewrite J(s, x; ρ), given in (13), in the form:

J(s, x; ρ) = x2 + E

[

∫ T −s

0
{[αXt − (1 + α)ρtXt](2Xt) +

+ σ2(1 + α)2ρ2
t X

2
t

}

dt
]

.

(14)

where we denote the process (X0,x
t )t≤T with Xt. Then the optimization problem

can be equivalently written in the form:











φ(s, x) := x2 + inf
ρt∈A

E

[

∫ T −s

0
{[αXt − (1 + α)ρtXt](2Xt) + σ2(1 + α)2ρ2

t X
2
t } dt

]

,

sub dXt = [αXt − (1 + α)ρtXt]dt − σ(1 + α)ρt Xt dWt, with X0 = x,
(15)

16For more details about the HJB methodology, see Fleming and Soner (2006) and Stengel
(1986).
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where the initial value X0 = x is fixed in order the equation for Xt to have an
unique solution.

Note that in choosing the optimal value for ρt, the government will take into
account two relevant elements: first, the reduction power of the primary surplus,
second, the relative volatility that the fiscal action itself may transmit to the
system. As already discussed, equation (6), in fact, combines these two elements
in a simple way so as to create a trade-off between debt reduction and uncertainty:
the higher the effort in stabilizing the debt, the more uncertainty will enter the
system. As a result, the optimal solution of ρt is expected to strike a balance
between these two opposite forces, as any effort in reducing debt is conducive to
more uncertainty for the system.

By applying the HJB equation to the second term on the right hand side of
the optimization problem in (15), we obtain the following variational equation for
w ≡ ρt:

inf
w

{

[αXt − (1 + α)wXt](2Xt) + σ2(1 + α)2w2X2
t + (16)

+
∂φ

∂t
+ [αXt − (1 + α)wXt]

∂φ

∂x
+

1

2

[

σ2(1 + α)2w2X2
t

] ∂2φ

∂x2

}

= 0

To find an optimal control we now derive equation (16) with respect to w and for
Xt = x we obtain the following equation:

− 2(1 + α)x + 2σ2(1 + α)2wx − (1 + α)
∂φ

∂x
+ σ2(1 + α)2wx

∂2φ

∂x2
= 0, (17)

from which it immediatly follows:

w ≡ ρt =
2(1 + α)x + (1 + α)

∂φ

∂x

σ2(1 + α)2x

(

2 +
∂2φ

∂x2

) . (18)

To find a solution for equation (18) we try with a guess function with separated
variables of the following type:

φ(s, x) = c x2 g(s), (19)

with g(0) is a constant, that is g(0) = K, because the value function φ(s, x) in
the optimization problem (15), as we shall see, is a multiple of x2, that is it yields
φ(0, x) = K̃x2.

By substituting (19) into (18), where ∂φ/∂x = 2cxg(s) and ∂2φ/∂x2 = 2cg(s),
we obtain:

ρ̂t = ρ̂(t, Xt(ω)) = ρ̂ =
1

σ2(1 + α)
, (20)

that is the optimal Markov control ρ̂(t, X) is constant. Note that the constant
control (20) is admissible as it belongs to the set A as in (8). Indeed a constant
function is a Borel-measurable function ρ belonging to the set in (8).
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Sufficient conditions ensuring that the optimization problem (15) satisfies the
requirements for the optimality of the optimal Markov control solution are in
Appendix C where we show that the application which associates cx2g(s) with
every pair (s, x) satisfies all the conditions of the Verification Theorem.

From equation (20) three remarks are in order. First, the optimal correction
factor is independent of the debt ratio distance from its target. This implies that
at the optimum the relationship between the surplus ratio and the deviation of
the debt-output ratio from its target will be linear.

Second, the optimal correction is procyclical, since it prescribes a stronger non-
linear reaction in the presence of favourable economic conditions (high growth) and
a lower adjustment in the case of economic downturn (low growth). However, if
the real interest rate is high, other thing being equal, then (20) will imply a weaker
response. This apparently counterintuitive result stems from the existing trade-
off generated by a vigorous reaction to the debt ratio, namely that between the
expected faster fiscal consolidation and the higher uncertainty surrounding the
final outcome of the fiscal consolidation itself. The idea is that when economic
conditions are already favourable for the stability of the debt ratio (i.e. low α),
the government would find it optimal to undertake a strong corrective measure.

Third, when the coefficient diffusing uncertainty is high, the correction factor
should correspondingly be low. The idea behind this result is that large shocks
can potentially undermine or magnify the effectiveness of the fiscal effort, so that
it is ‘optimal’ to limit the magnitude of the correction mechanism itself.

These results can be summarised by looking at the value function (12) corre-
sponding to the optimal solution. To derive it, we have to substitute the expres-
sions (19) and (20) into equation (16) in order to obtain the separated equation
for the temporal function g(s):

g′(s) =
(

1

σ2
− 2α

)

g(s) +
1

c

(

1

σ2
− 2α

)

. (21)

If we insert the optimal control (20) into the evolution equation in (15), this
equation becomes

dXt =
(

α − 1

σ2

)

Xt dt − Xt

σ
dWt ,

whose solution, by virtue of Itô’s lemma, is

Xt = xe(α−1/(2σ2))t−Wt/σ. (22)

If we substitute the solution (22) into the integral in (15), the value function, for
s = 0, becomes

φ(0, x) = x2 + (2α − 1/σ2)x2 E

[

∫ T

0
e(2α−1/σ2)t−2Wt/σdt

]

= K̃x2,

because the mean value of a random variable is obviously a constant.
If we now consider the initial condition g(0) = K, the solution of the temporal

ordinary differential equation (21) reads

g(s) =
(

K +
1

c

)

e(1/σ2−2α)s − 1

c
. (23)
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We then have an explicit expression of the value function φ(s, x) given by

φ(s, x) =
[

(Kc + 1) e(1/σ2−2α)s − 1
]

x2. (24)

Under the condition 1/σ2 > α, namely, fiscal solvency is expected to be sat-
isfied, the value function is increasing in x, suggesting that the larger the initial
debt ratio gap, the higher the ‘loss’ the government will experience at the opti-
mum. If uncertainty is high and/or economic fundamentals are adverse to fiscal
consolidation, then at the optimum the ‘loss’ will be lower.

Given the optimal rule (20), from equation (6) we are then able to find the
adjustment process for the debt ratio gap given the realization of shocks. However,
given the presence of uncertainty the following questions arise. What is the time
needed to meet a fiscal target? How robust is the adjustment rule to adverse
shocks? Or better, what is the probability that given the materialization of adverse
shocks public debt is still on the right track towards a preset fiscal goal? In the
next Section we will address these questions proposing two different approaches.

4 Measures of Fiscal Resilience

In this Section we assess the properties of the optimal policy (20) in terms of
fiscal resilience, that here we interpret as the capability to stay on track towards
a given fiscal consolidation objective despite the occurrence of adverse shocks.
Specifically, we provide two measures of fiscal resilience: (i) the time necessary
to reach an expected fiscal consolidation objective, (ii) the probability of reach-
ing that objective. Nonetheless, each measure, pointing to the same underlying
idea of resilience, provides us with different information about the ability of the
government to meet its target in a stochastic environment.

In particular, the first measure tries to pinpoint the time needed to reach a
given objective that is expected to be achieved in the presence of shocks. This may
be seen as the time resistance towards the objective when the system is placed
under pressure. An increase in this measure then implies lower fiscal resilience to
shocks.

The second measure, the probability of reaching a fiscal consolidation target,
may be interpreted as the capability to absorb negative shocks without changes
that may undermine the achievement of a fiscal objective. In other words, this
measure captures the ability of the government to get back on track towards the
consolidation objective in the presence of adverse shocks that push the debt up. It
thus gauges the flexibility and the adaptive capacity of the system as a whole. As
we will see, α and σ play a major role in amplifying or reducing this adaptability.
An increase in this measure then indicates higher fiscal resilience to unforeseen
shocks.

4.1 Time Needed to Reduce the Debt Ratio Gap

What is the time needed to reduce the debt ratio gap of a given amount? How
do uncertainty and fundamentals affect the time required to meet a given target?

12



Figure 1: Debt Ratio Gap and Uncertainty - Theoretical Moments
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Note: the figure plots the mean and the standard deviation of the debt-ratio gap Xt

for different values of uncertainty, σ, given an initial debt-ratio gap x = 50% and

fundamentals α = 0.02.

These questions are relevant issues for policymakers, since the achievement of
their goals is conditioned by the expected time necessary to meet them. Indeed,
adverse cyclical factors and changed political conditions may considerably expand
the time eventually needed to reach a given objective, prolonging the time span of
a policy action. The credibility of any fiscal reform also depends on the expected
time necessary to reach an established aim. The more distant in the future the
achievement of the final goal, the less credible the policy action will be.

We start by substituting (20) into (6) in order to obtain the geometric Brownian
motion describing the stochastic evolution of debt under the optimal policy:

dXt =
(

α − 1

σ2

)

Xt dt − 1

σ
Xt dWt . (25)

Equation (25) describes the debt ratio dynamics when the government is com-
mitted to follow the optimal correction rule. It is easy to note that, up to a random
effect given by Wt, the model dynamics and, therefore, the speed of the adjustment
towards a given target depend on the combination of α and σ. Specifically, for a
high α, reflecting a high interest rate and/or a low GDP growth, the adjustment
of the debt ratio towards the target will be slower. Similarly, a high σ, reflecting
more uncertainty around the effectiveness of the fiscal reaction, slows down the
adjustment process towards the debt ratio objective.

The solution of equation (25) can be obtained by using the Itô’s lemma as
follows:

Xt = x e(α− 3

2σ2 )te− 1

σ
Wt . (26)

From (26), recalling (5), the expected value of the debt ratio gap E[Xt] is

E[Xt] = x e(α− 3

2σ2 )t
∫

R

e−w/σ e−w2/(2t)

√
2πt

dw = x e(α− 1

σ2 )t, (27)

13



while the variance is

E[Xt − E[Xt]]
2 = x2 (e

1

σ2
t − 1)e2(α− 1

σ2 )t. (28)

From (27) the expected value of the debt gap ratio declines over time provided
that condition 1/σ2 > α, that is, fiscal solvency is expected to be satisfied.17 The
speed of convergence towards an expected zero-gap target is clearly increasing
in α and in σ. If 1/σ2 > α, then the variance of Xt will display an hump-shaped
dynamics over time. To better illustrate the behaviour of moments as time changes
we will make use of a numerical example.

Figure 1 presents the expected value of the debt-ratio gap E(Xt) and its stan-
dard deviation σXt

, given an initial debt-ratio gap x = 50%, α = 0.02 and three
different values of σ. For high uncertainty the time necessary to reach the objec-
tive will expand as a result of the fact that the government will find it ‘optimal’
to slow down the fiscal effort in response to the higher unpredictability of the
final outcome of the policy intervention. As an example, after 10 years for σ = 5,
E(Xt) will be about 20 p.p. higher than what observed under more stable eco-
nomic conditions, that is for σ = 3. After 40 years E(Xt) is close to the zero target
with σ = 3, while for σ = 5 the expected value is still 20 p.p. above the target.
However, a strong reaction to the debt ratio initially generates a high variability
especially when σ is lower. This is because the optimal rule (20) prescribes a
strong reaction to the debt ratio gap when σ is low. At later stages, instead, the
standard deviation declines faster the lower the degree of uncertainty. As long as
the debt ratio declines and the gap towards the long-run objective is narrowed,
the amount of uncertainty is sharply reduced. This is the result of the initial
trade-off faced by the policymaker at the earlier stages of the adjustment towards
the closure of the gap, discussed in Section 2. Figure 2 shows the role played by
market fundamentals in determining the time path of the expected value of the
debt ratio gap and of its standard deviation. We observe that, other things being
equal, the higher α (reflecting adverse economic conditions such as low growth
and/or high interest rate), the slower the convergence towards the objective, and
thus more the time needed to meet the established objective and the higher the
variability. Hence, as expected, a high α severely reduces the stabilizing properties
of the rule. Overall the effects of changes in market fundamentals are magnified
in the presence of high uncertainty. This can by easily explained by close inspec-
tion of equation (25), where for an increase in σ the role of market fundamentals
becomes pivotal in shaping the time path of the debt ratio gap. In the presence
of high uncertainty the optimal rule, in fact, implies a weaker reaction, so that
the adjustment of the debt ratio towards a given target relies on market funda-
mentals at a greater extent. Table 1 summarizes the above findings presenting the
time needed to reach different debt ratio gaps that are expected to be achieved in
the presence of shocks for different values of σ and α. We consider four different

17Note that the mean value (27) goes to zero asymptotically, meaning that the objective is
met when the time tends to infinite, and not for a finite time t. In this respect, equation (27) is
assumed to be zero as long as the value of the function itself is lower than a (given) threshold
very close to zero. For this reason, we can argue that the mean value (27) becomes zero in a
finite time (at the exit time), although the convergence is just asymptotic.
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Figure 2: Debt Ratio Gap and Fundamentals - Theoretical Moments
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Note: the figure plots the mean and the standard deviation of the debt-ratio gap Xt

for different values of fundamentals, α, given an initial debt-ratio gap x = 50% and

uncertainty σ = 5.

expected fiscal consolidation goals and from (27) we compute the time needed to
reach the objective. As before, the initial value x is set at 50%. In the more
favourable scenario, with α set at 0.01 and σ at 3, the time needed to close the
gap by 10 p.p. is 2 years, while in the worst scenario, with α at 0.03 and σ at
5, is 22 years. Similarly, closing the gap by 40 p.p. is feasible in 16 years under
favourable conditions and in 161 years under adverse circumstances.

4.2 Probability of Reaching a Fiscal Objective

In this section we propose a fiscal resilience measure aiming at quantifying the
ability to meet a debt target in a stochastic environment. We also assess how
fiscal resilience may vary when the underlying economic conditions change. Since
the debt ratio is constantly bounced around by a number of shocks, the reduction
of debt towards a target is uncertain. Indeed, as a result of two opposing forces, the
correction rule pushing debt down on the one hand, and adverse shocks that may
drive debt up on the other hand, debt trajectories are surrounded by uncertainty.
Thus, in a stochastic environment it becomes relevant for policymakers to measure
the degree of confidence associated with the effectiveness of the fiscal action at
play, namely the capability of pursuing an objective. This, in turn, describes its
resilience relative to the target.

In detail, the basic setup is as follows. We assume that the government is
committed to meet a target following the optimal rule (20). Let us define this
target x. It is then assumed that the current level of debt ratio gap x is higher than
the established objective of the government x. It should be noted that this target
may be interpreted either as an intermediate objective of a fiscal consolidation

15



Table 1: Time Necessary to Meet an Expected Debt Ratio Target

σ = 3
α = 0.01 α = 0.02 α = 0.03

x − E(Xt) = 10 2 2 3
x − E(Xt) = 20 5 6 6
x − E(Xt) = 30 9 10 11
x − E(Xt) = 40 16 18 20

σ = 4
α = 0.01 α = 0.02 α = 0.03

x − E(Xt) = 10 4 5 7
x − E(Xt) = 20 10 12 16
x − E(Xt) = 30 17 22 28
x − E(Xt) = 40 31 38 50

σ = 5
α = 0.01 α = 0.02 α = 0.03

x − E(Xt) = 10 7 11 22
x − E(Xt) = 20 17 26 51
x − E(Xt) = 30 31 46 92
x − E(Xt) = 40 54 80 161

Note: the table reports the number of years necessary to close the gap by an expected

given amount for different combinations of uncertainty, σ, and fundamentals, α, given

an initial debt ratio gap x = 50%.

plan (x > 0) or as the final target itself of closing the debt ratio gap (x = 0).
The stochastic component Wt in (26) may push the debt ratio gap up for some

time, thus frustrating the policy effort. Besides, the deterioration of the economic
conditions that comes from the fiscal correction, in turn, may increase uncertainty,
so further eroding the confidence towards the objective. Let us assume that, from
the government perspective, x > x is deemed to be the worst outcome as a result
of very adverse shocks. Thus, at time 0 debt is assumed to be in between two
extremes, namely the target and the worst outcome: x ∈ D := (x, x). Given these
hypotheses, we address the following questions. What is the probability that,
given uncertainty, at time t the debt ratio is bending towards the objective x?
What is the role played by fundamentals and uncertainty?

In order to construct this probability we make use of the concept of harmonic
measure. Formally, a harmonic measure of Xt describes its distribution as Xt hits
the boundaries of D, namely x or x. More specifically, to build up such a measure
we first take the debt accumulation dynamics under the optimal correction rule as
in (25). By virtue of the diffusion theory related to the Itô stochastic processes, we
can associate the following second-order ordinary differential equation to equation
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(25) as follows:
x2

2σ2
f ′′(x) +

(

α − 1

σ2

)

x f ′(x) = 0. (29)

Let f ∈ C2(R) be a solution of this differential equation. Also, let (x, x) ⊂ R be
an open interval such that x ∈ (x, x) and put

τ = inf
{

t > 0 : Xt /∈ (x, x)
}

, (30)

where τ measures the first instant of time in which the debt ratio gap does not
belong to the interval (x, x). We are assuming that τ < ∞ almost sure with
respect to the probability law Qx by means of the Brownian motion.

Recalling the Dynkin’s formula it is possible to give a formal expression for
the probability that debt is bending towards the objective x . If f(x) Ó= f(x), by
using the Dynkin’s formula then the probability may be written as

µx(x) =
f(x) − f(x)

f(x) − f(x)
. (31)

that is the harmonic measure µ of X on x.18 For a formal proof of how (31) is
obtained, see Appendix D. Such a harmonic measure is the probability that, in
the first instant of time τ in which the process Xτ does not belong to the fixed
open interval (x, x), the process assumes the value x.

From an economic point of view, the harmonic measure (31) may have a twofold
interpretation. On the one hand, it may be seen as an index of confidence about
how much a system is vulnerable to potential qualitative changes. In our setup,
qualitative changes may be considered a state jump into the wrong direction x.
On the other hand, µx(x) may be portrayed as the government ability to bend
towards a target for a given α and σ, under the optimal correction rule and in the
presence of external perturbations. The first interpretation highlights the capa-
bility to withstand negative shocks, while the second one refers to the capability
of meeting an objective. Nevertheless, both interpretations outline the idea of
resistance against adverse conditions. This is why in terms of fiscal resilience the
two interpretations are interchangeable.

After some manipulations (see Appendix E for more details), it is possible to
give an explicit expression for (31) as follows:

µx(x) =
x3−2σ2α − x3−2σ2α

x3−2σ2α − x3−2σ2α
. (32)

The value of µx(x) thus depends on the specific setting of α and σ. Figure 3 shows
how it changes for different parametrization of α and σ, where we have set x = 50%,
x = 45% and x = 55%. The horizontal dashed line corresponds to µx(x) = 0.5.
It should be noted that above this line the fiscal solvency condition holds, i.e.
1/σ2 > α, while it is violated below, i.e. 1/σ2 < α. The three plotted curves

18To be sure, the corresponding harmonic measure µ of X on x can be derived as µx(x) =
1 − µx(x).
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Figure 3: Probability of Reaching a Consolidation Target, Uncertainty, and Fun-
damentals
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Note: the figure plots µx(x) for different values of uncertainty, σ, and fundamentals, α,

given an initial debt-ratio gap x = 50% and interval boundaries x = 55%, x = 45%.

intersect the horizontal lines for values of σ, such that 1/σ2 = α. We observe that
a lower α increases the probability of reaching the objective as a result of more
favourable economic conditions (high output growth and/or low interest rate). A
higher σ, instead, injects more fiscal policy uncertainty into the system and the
ability to meet the objective thus tends to inch down. This measure is also
affected by the distance between the worse outcome x and the current state of
debt x. The higher this distance the higher the resilience. In other terms, if the
current debt x is relatively close to the objective x (that is, relatively far from x)
the chances to meet it will be higher than in the case in which x is far from the
objective. The underlying idea is that the closeness to the objective entails that
uncertainty may hardly undermine the capability to reach the objective itself. In
a way, the confidence that the positive effects from the correction rule will prevail
over negative shocks is higher if the objective is at hand. However, also in this
case the specific parametrization of σ may affect the capability to meet the target.

Figure 4 shows how this measure of fiscal resilience varies for different values
of x in the interval x = 0% and x = 100% and for three different parametrizations
of σ, ensuring that the fiscal solvency condition (i.e. 1/σ2 > α) always holds.
We observe that, for given σ, µx(x) decreases the farer x from the objective. As
expected, if the current state of debt is very far from the target, then the confidence
to meet the objective will be a remote possibility and µx(x) will be next to zero
accordingly. We observe that a higher σ pushes the probability down as a result
of the limiting effect of more uncertainty.

Finally, in Figure 5 we explore how fiscal resilience changes with the size of
the interval (x, x) under the assumption that x is always centered in it. Clearly,
for a given level of uncertainty the wider the interval, the higher µx(x) provided.
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Figure 4: Probability of Reaching a Consolidation Target, Initial Conditions, and
Uncertainty
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Note: the figure plots µx(x) for different initial values of the debt ratio x, and of uncer-

tainty σ, given interval boundaries x = 100%, x = 0 and fundamentals, α = 0.02.

Figure 5: Probability of Reaching a Consolidation Target, Uncertainty, and Inter-
val Size
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Note: the figure plots µx(x) for different values of uncertainty, σ and of interval bound-

aries x − x, given an initial debt-ratio gap x = 50% and fundamentals, α = 0.02.
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All the curves intersect at a point such that α = 1/σ2, which describes the loci
ensuring that µx(x) = µx(x) = 0.5 for a given x centered in any interval. It should
be noted that up to this point, starting from a very low level of uncertainty, fiscal
solvency is expected to be satisfied, while afterwards the expected value of the
debt ratio gap does not converge to zero. This is why µx(x) declines sharply the
larger the size of the interval. This result can be explained by the fact that when
market fundamentals are such that fiscal solvency is not expected to be met (i.e.
the condition, 1/σ2 > α, does not hold) a wide interval entails a lower probability
that things may improve just by chance. This second measure of fiscal resilience
is thus more general than that based on the time necessary to reduce the debt
ratio gap, since it may be applied to cases in which the debt ratio gap is expected
to expand over time and public debt is unsustainable.

5 Conclusion

This paper studies the optimal debt reduction policy in a simple stochastic model
of debt by using optimal control theory and applying the Hamilton-Jacobi-Bellman
equation. The government is assumed to follow a simple feedback rule according to
which the primary surplus is adjusted to the deviations of the debt-to-GDP ratio
from a given target. However, the government has partial control over the primary
budget balance, since the final impact of any fiscal intervention is surrounded by
uncertainty. In such an environment the optimal Markov control policy turns out
to prescribe that the reactivity of the primary surplus to the debt ratio gap is
independent of the debt-GDP ratio itself, rather it depends only on the interest
rate, the growth rate of the economy and the degree of uncertainty surrounding
the effects of fiscal policies. Overall, the optimal rule envisages a strong fiscal effort
under favourable economic conditions. This result suggests that a simple linear
rule of primary surplus adjustment to the deviation of the debt-GDP ratio from
its target may be optimal, provided that the size of the adjustment coefficient is
tailored to the underlying market fundamentals.

We propose two different measures of fiscal resilience under the optimal control.
The first measure is simply based on the time needed to meet an expected fiscal
consolidation objective. The second measure, relying on harmonic measure theory,
is constructed from the probability distribution of the debt ratio as it hits the
boundary of a given open interval. This measure gives us the probability that
the debt ratio bends towards a target and may be then used to assess whether
the debt ratio is on an explosive path or not. As expected high growth rates and
low interest rates improve fiscal resilience, while a higher degree of uncertainty
jeopardizes fiscal stability. We argue that these two measures could be used as
simple indicators to gauge the goodness of a fiscal consolidation plan and as early
warning indicators of fiscal imbalances.

In this paper we have deliberately considered a parsimonious model, yet gen-
eral enough to capture several dimensions of the public debt control problem. The
analysis may be extended in a number of directions. First, all the results have been
obtained taking both the GDP growth and the interest rate as given. Both the
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fiscal conduct and the level of the outstanding debt may directly affect these vari-
ables and change the dynamics of debt accumulation. Second, the analysis may
be extended to account for the interaction between monetary and fiscal policies.
The underlying monetary regime may facilitate or make more difficult the optimal
control of public debt, and when it comes to ensure jointly price stability and fiscal
solvency, the policy trade-offs may become more severe and the optimal control
problem more challenging. Finally, the measures of fiscal resilience proposed in
this paper should be compared with other fiscal indicators and their behaviour
should be analyzed in practice. We leave these aspects for future research.
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Appendix A

Definition 1. Given a set Ω, a σ − algebra F on Ω is a family F of subsets of Ω
that fulfill the following properties:

(i) the empty set ∅ belongs to F ;

(ii) if F ∈ F , then the complement F̄ of F in Ω belongs to F , too;

(iii) if A1, A2, A3, · · · ∈ F , then A :=
∞
⋃

i=1

Ai ∈ F . ✷

Definition 2. The pair (Ω, F) is called a measurable space. ✷

Definition 3. A probability measure P on a measurable space (Ω, F) is a
function P : F −→ [0, 1] such that

(i) P(∅) = 0 and P(Ω) = 1;

(ii) if A1, A2, A3, · · · ∈ F and Ai ∩ Aj = ∅, ∀i Ó= j, then P

(

∞
⋃

i=1
Ai

)

=
∞

∑

i=1

P(Ai).

✷

Definition 4. The triple (Ω, F ,P) is called a probability space. It is called a
complete probability space if F contains all subsets S of Ω with P−outer measure
zero, where the P − outer measure, denoted by P

∗, is defined as

P
∗(G) = inf

{

P(F ) : F ∈ F and G ⊂ F
}

. ✷

Definition 5. For a given family G of subsets of Ω, the σ − algebra denoted
by the symbol F

G
and defined as

F
G

=
⋂

{

F : F is a σ − algebra of Ω and G ⊂ F
}

is called the σ − algebra generated by G. ✷

Definition 6. If Ω is a topological space (e.g. Ω = R
n) equipped with the

topology G of all open subsets of Ω, then the σ−algebra B = F
G

is called the Borel
σ − algebra on Ω and the elements B ∈ B are called Borel sets. ✷

Definition 7. Given the measurable space (Ω, F), the (increasing) family
{Mt}t≥0 of σ − algebras of Ω such that

Mt1
⊂ Mt2

⊂ F , ∀ 0 ≤ t1 < t2 ,

is called a filtration on (Ω, F). ✷
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Appendix B

Remark 1. There exists a unique solution for the controlled equation (11) (see
Øksendal (2003) for more details).

For X̄ < Xf let us define the exit time τ of the dynamics as

τ := inf{t > 0 | Xt > X̄}. (B.1)

Remark 2. By virtue of well known results, the measurability of τ with respect
to the σ-algebra Ft follows. Indeed, we have that τ is a stopping time.

Theorem 1 (Dynkin’s formula). Let Xt be the Itô diffusion

dXt = µ(Xt) dt + σ(Xt) dBt, X0 = y, (B.2)

and f ∈ C2
0(R). If τ is a stopping time with E[τ ] < +∞, then the following

relationship holds:

E[f(Xτ )] = f(x) + E
[
∫ τ

0
Lf(Xs) ds

]

, (B.3)

where

Lf(z) := µ(z)
df

dz
+

1

2
[σ(z)]2

d2f

dz2
. (B.4)

Theorem 2 (HJB equation). Suppose that we have

V (s, y) := sup
ρt∈A

E
[
∫ τ

s
f(Xt, ρt) dt

]

, (B.5)

with
{

dXt = µ(Xt, ρt) dt + σ(Xt, ρt) dBt,
X0 = x .

(B.6)

Suppose that V ∈ C2(R+) satisfies

E
[

|V (Xα)| +
∫ α

0
|LρV (Xt)| dt

]

< +∞, (B.7)

for all bounded stopping times α < τ , for all x ∈ R and all ρ ∈ A, where

(LzV )(s, x) :=
∂V (s, x)

∂s
+ µ(x, ρ)

∂V

∂x
+

σ2(x, ρ)

2

∂2V

∂x2
. (B.8)

Moreover, suppose that an optimal control ρ∗ exists, then we have

sup
ρ∈A

{f(x, ρ) + (LρV )(x)} = 0, (B.9)
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and the supremum is obtained if it yields ρ = ρ∗
t , that is

f(x, ρ∗(t)) + (Lρ∗(t)V )(x) = 0 . (B.10)

Theorem 2 also applies to the corresponding minimum problem

φ(s, x) := inf
ρt∈A

E
[
∫ τ

s
f(Xt, ρt) dt

]

. (B.11)

We have in fact

φ(s, x) = − sup
ρt∈A

E
[
∫ τ

s
− f(Xt, ρt) dt

]

,

from which, by replacing V with − φ and f with −f , it follows that the (B.9) in
Theorem 2 becomes:

inf
ρ∈A

{f(x, v) + (Lzφ)(x)} = 0. (B.12)

For the details the reader may refer to Øksendal (2003).
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Appendix C

In this Appendix we give sufficient conditions to conclude that (20) is the optimal
Markov control process and (24) is the corresponding value function. The proof
relies essentially on Itô’s lemma as follows.

Verification Theorem. Let

φ(s, x) := inf
ρt∈A

E
∫ T −s

0
f(t, Xt, ρt) dt,

with

dXs = b(s, Xs, ρ(s, Xs))ds + σ(s, Xs, ρ(s, Xs))dWs and X0 = x,

be an optimisation problem. Let V be a C1,2([0, T ) × R) ∩ C([0, T ) × R) function
and let us assume that f and V have quadratic growth, i.e. there is a constant C
such that

|f(t, x, ρ)| + |V (t, x)| 6 C(|x|2 + 1), (C.1)

for all (t, x, ρ) ∈ [0, T ) × R × A.
(i) Suppose that

∂V (t, x)

∂t
+ f(t, x, ρ) + b(t, x, ρ)

∂V (t, x)

∂x
+

σ2(t, x, ρ)

2

∂2V (t, x)

∂x2
> 0 (C.2)

on [0, T ) × R. Then V 6 φ on [0, T ] × R.
(ii) Assume further that there exists a minimizer ρ̂(t, x) of the function

ρ → LρV (t, x) + f(t, x, ρ),

such that

0 =
∂V (t, x)

∂t
+ inf

ρ∈A

{

f(t, x, ρ) + b(t, x, ρ)
∂V (t, x)

∂x
+

σ2(t, x, ρ)

2

∂2V (t, x)

∂x2

}

=

=
∂V (t, x)

∂t
+ Lρ̂(t,x)V (t, x) + f(t, x, ρ̂),

(C.3)

where LρV (t, x) is defined as

LρV (t, x) := b(t, x, ρ)
∂V (t, x)

∂x
+

σ2(t, x, ρ)

2

∂2V (t, x)

∂x2
. (C.4)

Then the stochastic differential equation

dXs = b(s, Xs, ρ̂(s, Xs))ds + σ(s, Xs, ρ̂(s, Xs))dWs (C.5)

defines a unique solution X for each given initial date X0 = x and the process
ρ̂ := ρ̂(s, Xs) is a well-defined control process in A. Then φ is the value function
and ρ̂ is the optimal Markov control process.
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In our case from equation (15) we have

f(t, x, ρ) =
[

σ2(1 + α)2ρ2 + 2α − 2ρ(1 + α)
]

x2, (C.6)

which has quadratic growth and then it follows that there exists a positive constant
such that

C1 > sup
ρ

{

|σ2(1 + α)2ρ2 + 2α − 2ρ(1 + α)|
}

(C.7)

and |f(t, x, ρ)| 6 C1x
2. Since the term in square brackets in (24) is bounded, it

follows that there exists a positive constant C2 such that |f(t, x, ρ)| 6 C1x
2. Then,

the condition (C.1) is satisfied with a positive constant C > C1 + C2 − 1.
Further, the condition (C.2) is verified, too, because the expression

∂V (t, x)

∂t
+ f(t, x, ρ) + b(t, x, ρ)

∂V (t, x)

∂x
+

σ2(t, x, ρ)

2

∂2V (t, x)

∂x2
(C.8)

is convex with respect to ρ and thus positive or null for each ρ Ó= ρ̂.
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Appendix D

In this Appendix we derive equation (31) by means of Dynkin’s formula. Specifi-
cally, let

dXt = r(Xt)dt + σ(Xt)dBt, (D.1)

be a 1-dimensional Itô diffusion with characteristic operator A and f ∈ C2(R) be
a solution of the ordinary differential equation:

Af(x) = r(x)f ′(x) +
σ2

2
f ′′(x) = 0, x ∈ R. (D.2)

Let (a, b) ⊂ R, with b > a > 0, be an open interval such that x ∈ (a, b) and
put

τ ≡ τ(a, b) = inf{t > 0 such that Xt /∈ (a, b)},

and assume that τ < ∞ a.s. with respect to the probability law of Xt. If we define

p ≡ P x[Xτ = b],

it follows

p =
f(x) − f(a)

f(b) − f(a)
. (D.3)

Proof. If we consider the function f0 ∈ C2
0(R) such that f0(x) ≡ f(x) on (a, b)

and Af0(x) = Af(x) = 0, by means of Dynkin formula we can write:

Ex[f(Xτ )] = f(x) + Ex
[
∫ τ

0
Af(Xs) ds

]

= f0(x). (D.4)

Since f0(x) ∈ C2
0(R) and Xτ(a,b) /∈ (a, b), it follows that the random variable

Xτ(a,b) can assume the two values a and b, only. Then the mean value Ex[f(Xτ )]
of f(Xτ ) is given by the sum of the two products of the values f0(a) and f0(b)
multiplied by the corresponding probabilities, 1 − p and p respectively, that is

f0(x) ≡ Ex[f(Xτ )] = f0(a)(1 − p) + f0(b)p. (D.5)

From the equality between the first and the third term we obtain the final
relation

p(b) =
f(x) − f(a)

f(b) − f(a)
, (D.6)

and thus:

p(a) =
f(b) − f(x)

f(b) − f(a)
, (D.7)

because the equalities on the boundary of the interval f0(a) = f(a) and f0(b) =
f(b) hold. In the text we assume that a = x and b = x from which it follows
equation (31).
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Appendix E

In order to give an explicit expression to (31) we have first to solve equation (29).
To this aim we transform it into a first order differential equation through the
change of the variable f ′(x) = g(x), so that our equation now reads:

x2

2σ2

dg(x)

dx
+

(

α − 1

σ2

)

x g(x) = 0. (E.1)

By separating x, g(x) one obtains

dg

g
=

(

2 − 2σ2α
) dx

x
, (E.2)

whose solution is
g(x) = f ′2−2σ2α. (E.3)

By integration, we finally obtain the function f(x):

f(x) =
∫

g(x) dx = C

(

x3−2σ2α

3 − 2σ2α

)

+ K. (E.4)

We now have an explicit expression of the harmonic measure that debt hits the
extremes of D as follows:

µx(x) =
x3−2σ2α − x3−2σ2α

x3−2σ2α − x3−2σ2α
, (E.5)

µx(x) = 1 − µx(x). (E.6)
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