The Predictive Power of the Yield Spread:
Further Evidence and a Structural Interpretation

Carlo A. Favero* Iryna Kaminska† Ulf Söderström‡

November 2004
Preliminary

Abstract

This paper brings together two strands of the empirical macro literature: the reduced-form evidence that the yield spread helps in forecasting output and the structural evidence on the difficulties of estimating the effect of monetary policy on output in an intertemporal Euler equation. We show that the inclusion of a short-term interest rate and inflation in the forecasting equation improves the forecasting performance of the spread for future output but the coefficients on the short-term interest rate and inflation are difficult to interpret using a standard macroeconomic framework. A decomposition of the yield spread into an expectations-related component and a term premium allows a better understanding of the forecasting model. In fact, the best forecasting model for output is obtained by considering the term premium, the short-term interest rate and inflation as predictors. We provide a possible structural interpretation of these results by allowing for time-varying risk aversion, linearly related to our estimate of the term premium, in an intertemporal Euler equation for output.

Keywords:

JEL Classification: E27, E37, E43.

*IGIER, Università Bocconi and CEPR, carlo.favero@uni-bocconi.it.
†Università Bocconi, iryna.kaminska@uni-bocconi.it.
‡IGIER, Università Bocconi and CEPR, ulf.soderstrom@uni-bocconi.it.
1 Introduction

A large forecasting literature has examined variables that help predict the business cycle. The available empirical evidence tells us that the yield curve movements across the business cycle and yield curve fluctuations are a good leading economic indicator of GDP growth (Stock and Watson (1989), Harvey (1989), Estrella and Hardouvelis (1991), Plosser and Rouwenhorst (1994)). In particular, high spreads today are associated with higher GDP growth in the future. The more recent evidence tells us that yield spreads have become less useful as predictors in recent years (see, for example, Dotsey (1998)). In fact, one the spread’s major predictive failure occurred on the occasion of the 1990–91 recession, incidentally immediately after the publication of some of the most influential articles cited above.

At the same time, there is also a vast literature discussing small-scale macroeconomic models in which aggregate demand is related to the real short-term interest rate. In models derived from a dynamic general equilibrium model in which output is determined by an intertemporal Euler equation (see, for example, Walsh (2003) or Woodford (2003)), there is a relation between output and the expected path of future real short rates—the real long-term interest rate consistent with the expectations hypothesis—but there is no explicit role for the nominal yield spread.

Recently, such macro models consisting of a stylized demand and supply relationships closed by Taylor-type rules have been used to rationalize the declining predictive power of the term spread for output growth (Feroli (2004), Estrella (2004)). By augmenting the standard three-equation setup with an expectations model of the term structure that makes the long-term interest rate equal to the average of expected future short rates, these authors show that the parameters in the forecasting relation between yield spreads and future economic growth depend on the form of the monetary policy reaction function. Hence, the declining coefficients in the relation between the yield spread and future economic growth can be related to the changing behaviour of the Fed, featuring more aggressive behaviour toward the gap between inflation and the target and less aggressive behaviour toward the output gap.

This rationalization is potentially interesting but it has one main shortcoming: the expectations theory of the term structure is assumed at the outset, so there is no role for any term premium. In an often quoted paper, Campbell and Shiller (1987) have shown that the yield spread can be decomposed into a weighted sum of future expected changes in the short rate and a term premium. In principle, the spread
can be large because future monetary policy is expected to be tight (as the central bank reacts to a higher expected level of activity in the future) or because the term premium is large as investors do not like to take on risk in bad times.

Hence, decomposing the yield spread into a term reflecting future monetary policy and a term reflecting the term premium could be useful to understand why yield curve fluctuations help in predicting subsequent economic activity and why the predictive power of the spread fluctuates over time. Moreover, such a decomposition would also allow to assess the importance of the term premium in determining macroeconomic fluctuations and hence whether there it might be useful to include the term premium in macroeconomic models.

However, such a decomposition is difficult in practice as it involves expectations about the future path of the short-term interest rate, and different decompositions may differ substantially depending on how expectations are modelled. Two recent studies decompose the yield spread to understand why it is a good predictor of real activity: Hamilton and Kim (2002) provide a decomposition using ex-post observed short rates to substitute for ex-ante expected rates, while Ang et al. (2004) use a VAR to project expectations for the short-term rate, the spread and GDP growth.

One shortcoming of these papers is that they do not mimic satisfactorily the process used in real time by market participants when forecasting short-term interest rates. The use of ex-post observed returns as a valid proxy for ex-ante returns has been questioned by Elton (1999), citing ample evidence against the belief that information surprises tend to cancel out over time. Hence, realized returns cannot be considered as an appropriate proxy for expected returns. In the procedure followed by Ang et al. (2004), the VAR is estimated on the full sample and projections are made in-sample. This procedure therefore cannot simulate the investors’ effort to use the model in real time to forecast short rates, as the information from the whole sample is used to estimate parameters while investors can use only historically available information to generate predictions.

Our approach is to estimate a VAR at each point in time, using the historically available information, and then project short rates out-of-sample. Given the path of expected future short rates, we can construct yields to maturities consistent with the expectations theory and, as a residual, the term premium. Armed with the decomposition of the term spread into expected future monetary policy and the term premium we aim at contributing first to the forecasting literature by evaluating the role of our decomposition in understanding the predictive power of the spread for
future GDP growth and, second, to the macroeconomic literature by providing an assessment of the importance of the direct inclusion of some measure of the term premium in models of aggregate demand.

The rest of this paper is organized as follows. Section 2 provides some stylized facts on the role of the spread, the short-term interest rate, the long-term interest rate and inflation in predicting future output fluctuations. Section 3 derives a decomposition of the yield spread into expected short rates and a measure of the term premium by following our real time procedure and compares our results with the measures derived by Hamilton and Kim (2002) and Ang et al. (2004). We then show how the different decompositions affect the predictive model for output fluctuations. Section 4 provides some structural interpretation of our results, while Section 5 concludes.

2 Predicting GDP growth using interest rates

Throughout, we use quarterly U.S. data from 1954:1 to 2003:4 on the five-year Treasury bond yield, \(i_{t}^{20} \); the three-month T-bill rate, \(i_{t}^{1} \); real GDP, \(Y_{t} \); and inflation measured by the GDP deflator, \(\pi_{t} \). All data have been taken from the FRED database at the Federal Reserve Bank of St. Louis. We begin by analyzing predictive regressions for GDP growth based on a set of regressors containing the yield spread \((S_{t}^{20} = i_{t}^{20} - i_{t}^{1}) \) or, alternatively, the five-year rate, the three-month rate, inflation and a constant. We consider predictive regression for one-year ahead annual GDP growth \((\Delta_{4}y_{t+4} = \log(Y_{t+4}) - \log(Y_{t})) \) based on all possible combinations of the above regressors, for a total of 24 models. In practice, we estimate all possible specifications of the following forecasting equation:

\[
\Delta_{4}y_{t+4} = \beta_{t}^{i}X_{t,i} + \varepsilon_{t+4,i}, \tag{1}
\]

where \(X_{t,i} \) is the set of regressors, observable at time \(t \), included in the \(i \)-th specification \((i = 1, \ldots, 24) \) for future GDP growth. (A constant is always included in the set of regressors.) Our set of predictive models contains as special cases the standard predictive model for GDP growth based on the spread only and the a model similar to a simple specification for the aggregate demand, relating GDP growth to the real ex-post short-term interest rate.

Insert Figure 1 about here
After twenty years of initialization we estimate all models recursively. A range of statistical selection criteria weighting goodness of fit against parsimony of the specification selects unequivocally the model based on the spread, the nominal short-term interest rate and inflation as the best predictive model. Figure 1 reports the recursively computed adjusted R^2 associated to five different predictive models. Model 1 is the standard predictive model, including only the spread among the regressors, Model 2 includes the spread and the short-term rate, Model 3 includes the spread, the short-term rate and inflation, Model 4 includes the short-term rate and inflation, and Model 5 includes the long-term rate and inflation. Model 3 uniformly dominates: while including the spread leads to an improvement of the forecasting performance for GDP growth (compare Models 3 and 4), the inclusion of the short-term nominal rate and inflation in addition to the spread causes a significant improvement in the forecasting performance (compare Models 1, 2 and 3). Importantly, the model most closely related to an aggregate demand equation (Model 4) dominates only a specification in which the long-term rate is substituted for the short-term rate (Model 5). Finally, we note that the adjusted R^2 displays a common downward trend for all models, which is clearly more pronounced for the worst performing ones.

Insert Figure 2 about here

The indication given by the adjusted R^2 is confirmed by the pattern of the forecasting errors generated by the different models, reported in Figure 2. All models are unable to predict the 1990–91 recession, however models including the spread (Models 1–3) clearly dominate in the latter part of the sample. In particular, the specification which reflects the traditional aggregate demand equation (Model 4) features consistent predictive failures from the 1980s onward and clearly underperforms relative to the alternative models.1 The fact that the traditional specification of aggregate demand curve underperforms so drastically relative to models based on the spread naturally raises the question why the spread predicts GDP growth and how serious is the misspecification of structural models that find no role for this variable.

To this end it is interesting to assess the economic significance of the coefficients in the model selected unequivocally as best by the statistical selection crite-1Similar evidence has been recently been labeled by Goodhart and Hofmann (2004) as “The IS puzzle.”
ria. Figure 3 reports recursive estimates with associated standard errors for Model 3 including the spread, the short-term rate and annual inflation.

\textbf{Insert Figure 3 about here}

The recursive estimates show the well-known declining coefficient on the spread, a negative significant coefficient on the nominal short-term interest rate and a rarely significant but negative coefficient on inflation. It seems difficult to make economic sense of this statistical model for future GDP growth: compared with standard aggregate demand equations that include the real short-term interest rate, the coefficient on inflation has the wrong sign, and the important role of the nominal yield spread is puzzling. To clarify this issue, we decompose the yield spread in two components: the expected future path of monetary policy relative to the current short rate and a term premium. Almost all rationalizations of the forecasting power of the spread have concentrated on the first expectations-related term, neglecting the role of the term premium, but in principle, fluctuations in term premia might be a powerful predictor of macroeconomic fluctuations. Moreover, expected future monetary policy might very well be positively correlated with inflation, and its role in determining fluctuations in the spread might very well be the cause of the negative and not significant sign of inflation in the recursive estimation of Model 4. To explore more closely all these issues we need a decomposition of the spread into the expectations-related and term premium components, which we discuss and implement in the next section.

\section{Decomposing the yield spread}

To decompose the yield spread into an expectations-related (ER) component and a term premium (TP), consider the following definition of the time-varying premium:

\begin{equation}
\hat{i}_{t}^{20} = \frac{1}{20} \sum_{j=0}^{19} \mathbb{E} \left[i_{t+j}^{1} \mid I_{t} \right] + TP_{t},
\end{equation}

where i_{t}^{20} is the five-year interest rate, i_{t}^{1} is the three-month interest rate, I_{t} is the information available to agents when forming expectations at time t, and TP_{t} could be viewed as the sum of a liquidity premium and a term premium. Following
Campbell and Shiller (1987), equation (2) can be written in terms of the yield spread, \(S^{20}_t = i^{20}_t - i^1_t \) as

\[
S^{20}_t = \left\{ \frac{1}{20} \sum_{j=0}^{19} \mathbb{E}[i^1_{t+j} \mid I_t] - i^1_t \right\} + TP_t
\]

\[
= \sum_{j=1}^{19} \frac{20-j}{j} \mathbb{E}[\Delta i^1_{t+j} \mid I_t] + TP_t
\]

\[
= ER_t + TP_t
\]

To assess the relative importance of \(ER_t \) and \(TP_t \) in predicting future output growth, Hamilton and Kim (2002) estimate the regression

\[
\Delta_k y_{t+k} = \alpha_0 + \alpha_1 \left\{ \frac{1}{20} \sum_{j=0}^{19} \mathbb{E}[i^1_{t+j} \mid I_t] - i^1_t \right\} + \alpha_2 \left\{ i^{20}_t - \frac{1}{20} \sum_{j=0}^{19} \mathbb{E}[i^1_{t+j} \mid I_t] \right\} + \varepsilon_t,
\]

where

\[
\Delta_k y_{t+k} = (400/k) \ast (\ln Y_{t+k} - \ln Y_t).
\]

However, as expectations are not observable, they use ex-post observed short rates instead of ex-ante expected short rates, writing equation (4) as

\[
\Delta_k y_{t+k} = \alpha_0 + \alpha_1 \left\{ \frac{1}{20} \sum_{j=0}^{19} i^1_{t+j} - i^1_t \right\} + \alpha_2 \left\{ i^{20}_t - \frac{1}{20} \sum_{j=0}^{19} i^1_{t+j} \right\} + u_t,
\]

where the error term now is

\[
u_t = \varepsilon_t + (\alpha_2 - \alpha_1) \left\{ i^{20}_t - \frac{1}{20} \sum_{j=0}^{19} \mathbb{E}[i^1_{t+j} \mid I_t] \right\}.
\]

Equation (6) is then estimated by instrumental variables, exploiting the fact that under rational expectations the error term \(u_t \) should be uncorrelated with any variable known at time \(t \). In particular, they estimate a just-identified model using as instruments a constant, \(i^1_t \), and \(i^{20}_t \). As a result the measure of \(TP \) used by Hamilton and Kim (2002) are the fitted values from the first stage regression of \(\left(\frac{1}{20} \sum_{j=0}^{19} i^1_{t+j} - i^1_t \right) \) on a constant, \(i^1_t \), and \(i^{20}_t \). Importantly, this decomposition is constructed in a way
that gives agents more information than they have when forecasting future short rates in real time: \(TP \) is constructed first by using perfect foresight, then introducing some expectational error by running an IV procedure on the full sample. Moreover, the relation between the instruments and the endogenous variables is estimated only once on the full sample and therefore, at any intermediate point in the sample, it exploits information not available to the agents at that time.

Ang et al. (2004) also estimate equation (4), but derive expectations for future short rates using a vector of state variables that follows a Gaussian Vector Autoregression with one lag:

\[
X_t = \mu + \Phi X_{t-1} + \Sigma \epsilon_t.
\]

The vector \(X_t \) contains two factors from the yield curve: the short rate \(i^1_t \), expressed at a quarterly frequency, to proxy for the level of the yield curve, and the five-year spread, \(i_t^{20} - i^1_t \), to proxy for the slope of the yield curve; and a macroeconomic factor: the quarterly rate of real GDP growth, \(\Delta_4 y_t \). Having estimated the VAR on the full sample, the expected short rate is calculated by simulating the VAR forward. Thus, as in Hamilton and Kim (2002), expectations are derived giving to agents some information (the full-sample coefficient estimates) that they cannot have in real time. This problem becomes particularly relevant when the parameters in the VAR are subject to shifts and structural breaks.

Moreover, the inclusion of the level of the term structure in the VAR, which is a very persistent variable, might create some problems related to the non-stationary of the specification when the VAR is projected in the future. In fact, in the case in which interest rates are non-stationary but \(TP \) is stationary and hence the long and short interest rates are cointegrated with a cointegrating vector \((1, -1) \), the VAR representation adopted by Ang et al. (2004) is not consistent with cointegration. In this case the appropriate representation of the cointegrated VAR is the one adopted in Campbell and Shiller (1987), in which the level of the short rate is substituted by its first difference.

Given that the statistical selection criteria favor Model 3 as the best for predicting output growth and that this model contains the spread, the short rate and inflation, we extend the model using the decomposed spread in the following way:

\[
\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 ER_t + \alpha_2 TP_t + \alpha_3 i^1_t + \alpha_4 \pi_t + u_t,
\]
where

\[ER_t = \frac{1}{20} \sum_{j=0}^{19} E \left[i_{t+j}^1 \mid I_t \right] - i_t^1, \]
\[TP_t = i_t^{20} - \frac{1}{20} \sum_{j=0}^{19} E \left[i_{t+j}^1 \mid I_t \right]. \]

(9)
(10)

We consider three alternative measures of \(ER_t \) and \(TP_t \). The first one is obtained by applying to our case the method proposed by Hamilton and Kim (2002), that is, by constructing the relevant variable ex-post and then by instrumenting it using the long-term rate and current GDP growth as additional instruments. Thus, in the first stage regressions \(ER_t \) and \(TP_t \) are regressed on a constant, \(i_t^1, \pi_t, i_t^{20}, \) and \(\Delta_4 y_t \). We label these measures \(ER_t^{HK} \) and \(TP_t^{HK} \). Note that when applying this method we need the last five years of observations to construct the ex-post measure, so given a total available sample of 1954:1–2004:2 we can derive the relevant measures for the sample 1954:1–1999:2.

Our second measure is obtained by using the method proposed by Ang et al. (2004). Hence we estimate a fourth-order VAR including \(i_t^1, \pi_t, S_t, \Delta_4 y_t \) on the full sample, and we obtain \(ER_t^{APW} \) and \(TP_t^{APW} \) by recursively simulating forward the VAR for twenty periods for each data point from 1954:1 onwards. Following this method the two relevant measures are available for the sample 1955:1–2004:2.

Finally, we propose measures for \(ER_t \) and \(TP_t \), where we try to mimic the real-time forecasting procedure used by private agents, and we label these measures \(ER_t^{RT} \) and \(TP_t^{RT} \). To construct these measures we estimate at each point in time, using the historically available information, the following model:

\[X_t = \mu + \Phi(L)X_{t-1} + \Sigma \varepsilon_t \]
\[X_t' = [i_t^1, i_t^{20} - i_t^1, y_t^1, \pi_t] \]

We then simulate the estimated model forward, to obtain projections for all the

\[^2\text{The adopted specification replicates closely that of Ang et al. (2004). We have also experimented an alternative specification which includes the first difference rather than the level of the short rate, a model that is consistent with the cointegrated VAR of Campbell and Shiller (1987). The results are rather robust, however the simulated values from the cointegrated model are more volatile than those in the baseline specification. We take this as evidence that the coefficients in the cointegrating vector may be different for some sample split from the unit values imposed in the specification with the spread.}\]
relevant short rates and we construct ER as

\[
\overline{ER}_t = \sum_{j=1}^{19} \frac{20 - j}{20} E \left[\Delta i_{t+j}^1 \mid \Omega_t \right],
\]

(11)

where \(E \left[\Delta i_{t+j}^1 \mid \Omega_t \right] \) are the VAR-based projections for the future changes in the short rate, so \(\Omega_t \) is the information set used by the econometrician to predict on the basis of the estimated VAR model. Importantly, in implementing our procedure the econometrician uses (almost) the same information available to market participants in real-time. The expected future short rates at time \(t \) are constructed using information available in real time both for estimating the parameters and for projecting the model forward.

By combining equations (3) and (11) we obtain

\[
S_{20}^t = \frac{1}{20} \sum_{j=0}^{19} E \left[i_t^1 \mid I_t \right] - i_t^1 + TP_t
\]

\[
= \sum_{j=1}^{19} \frac{20 - j}{20} E \left[\Delta i_{t+j}^1 \mid I_t \right] + TP_t
\]

\[
= \overline{ER}_t + TP_t
\]

\[
= \overline{ER}_t + TP_t + \left(ER_t - \overline{ER}_t \right),
\]

(12)

where

\[
\overline{ER}_t = \sum_{j=1}^{19} \frac{20 - j}{20} E \left[\Delta i_{t+j}^1 \mid \Omega_t \right].
\]

(13)

Equation (13) makes clear that deviations of \(S_{20}^t \) from \(\overline{ER} \) can be explained by movements in the term premium or by differences between the model-based forecasts are derived by using the econometrician’s information set \(\Omega_t \) and agents’ expectations, which are formed given the information set \(I_t \), unknown to the econometrician. Under the assumption that this second term is negligible, significant deviations of \(S_{20}^t \) from \(\overline{ER} \) offer a measurable counterpart of the term premium. As the first twenty years of observations are needed to estimate the first model and initialize the procedure, the measures \(ER_t^{RT} \) and \(TP_t^{RT} \) are available only for the sample 1975:1–2004:2.

Insert Figure 4 and Table 1 about here
We report the three alternative decompositions of the yield spread in Figure 4, while their correlations are reported in Table 1. The three different measures of ER and the three different measures of TP are all positively correlated among them, although the correlation is not high. We take this as evidence of the presence of a common underlying factor, that is evident also graphically, but also as a signal that measurement matters. The correlation between all the ER and the TP factors is negative. The ER factors as measured by the Hamilton and Kim (2002) and the Ang et al. (2004) methods are positively correlated with the yield spread while the correlation between the term spread and these TP factors is low. The pattern is different for the measurement in real time in which case is the TP factor that features a higher correlation with the term spread. Further evidence is provided by recursive regression analysis, which we report in Figures 5–7.

Insert Figures 5–7 about here

Figures 5–7 reports the coefficients from recursive estimation of equation (8), after an initialization sample of 20 years. Thus the predictive model for one-year-ahead GDP growth includes a constant, the nominal short-term interest rate, inflation, an ER factor and a TP factor, where we consider, in turn, the three alternative decompositions of yield term spread. The models based on the Hamilton-Kim and Ang-Piazzesi-Wei decompositions are estimated recursively considering all the possible sample splits after an initialization sample 1955:1–1974:4, while the model estimated with the real-time measure needs another twenty years at the beginning of the sample to initialize the forecasting procedure and hence is estimated recursively with an initialization sample 1975:1–1994:4. In the Hamilton-Kim model the ER component is only weakly significant, while in the two other models it is never significant. The TP component is always significant, and the coefficients on the nominal short rate and inflation are significant (except for inflation in the Hamilton-Kim decomposition), and consistent with the theoretical aggregate demand model with a short-term real interest rate. All decompositions give a picture in which an increase in the real short term rate implies a contraction in future output growth. This evidence is stronger in the case of the Ang-Piazzesi-Wei and real-time decompositions than in the Hamilton-Kim decomposition. Importantly, there is no role for the expected path of future short rates in predicting future output, but instead the term premium plays an important role in predicting future output.
Why does decomposing the yield spread into an expectations-related component and a term premium generate a different sign on inflation in our predictive model for output? To answer this question, Figure 8 shows U.S. inflation and the average expected future short-term interest rate based on our real-time measure of the expectations related term: $ER^R_{t} + i^1_{t} = \frac{1}{20} \sum^{19}_{j=0} i^1_{t+j}$.

Insert Figure 8 about here

Figure 8 shows a strong positive correlation between expected monetary policy and inflation, which implies a negative correlation between the ER component and the real short-term interest rate. Hence a predictive model for GDP growth based on the spread, the nominal short-term interest rate and inflation might deliver a “wrong” or non-significant sign on the real short rate as a by-product of the negative correlation between real short-term policy rates and the ER component of the spread. Conversely, exactly for the same reason, a predictive model which includes only the two components of the spread but not the short-term nominal interest rate and inflation might attach a stronger significance to the ER component. So the implementation of the decomposition of the spread has an impact on the significance and the sign of coefficients of other variables of the predictive models and generates an interpretable pattern for the coefficients determining the effect of monetary policy on future growth.

But what about the predictive power of the model? Figure 9 helps in answering this question by reporting actual and predicted output growth, where prediction are recursively generated using the APW decomposition of the term spread. Note the RMSE is the lowest ever reported (compare with Figure 2) and that the model shows no major failure in predicting turning points in growth. In particular it does much better than the models analyzed in Figure ref_fit the predicting the 1990–91 recession.

Insert Figure 9 about here

Insert Table 2 about here

To sum up we consider a full-sample regression analysis. Table 2 contains the results of estimation of seven different predictive models. Model 1 is the standard predictive relation in which one-year ahead growth is related to the yield spread and a constant, Models 2 and 3 augments the specification of Model 1 by including progressively the nominal short-term rate and annual inflation, Model 4 is the
specification similar to an aggregate demand model in which future output growth is related to the monetary policy stance as captured by the nominal short-term interest rate and inflation, and Model 5 features the same specification of Model 4 but the short-term interest rate is substituted with the long-term interest rate. Model 6 augments the basic aggregate demand specification with the spread decomposed into the ER and the RP components. There are three versions of Model 6 which consider the three different decomposition of the spread. Finally, Model 7 considers the case in which only the ER and the TP components of the spread are entered into the model.

Several comments are in order. First, the highest adjusted R^2 is reached by model 6. RT which uses the real-time decomposition of the spread into the ER and the TP components. In this specification the ER component is not significant while the TP component is positive and significant, while the nominal interest rate and inflation are also significant with a negative and positive sign respectively. The adjusted R^2 delivered by this specification is twice as high as that delivered by the spread only (Model 1) and almost twice as high as the one delivered by the aggregate demand-type specification (Model 4) in which only nominal short-term rates and inflation are considered. Moreover, the decomposition allows to determine much more precisely the coefficient on inflation, which is never significant in the models that do not use the decomposition of the spread.

Second, the decomposition in real time dominates the other two decompositions in terms of predictive power and interpretability of the coefficients. Although coefficients from the Ang-Piazzesi-Wei and real-time decompositions are very similar, the adjusted R^2 from the latter is much higher. Hamilton and Kim (2002) found that both the ER and TP components were significant in predicting output growth, while Ang et al. (2004) found that only ER was significant. A comparative analysis of Models 6 and 7 shows that the significance of the ER term tends to disappear when nominal interest and inflation are included in the specification. We have already commented on this. If we concentrate on our favorite decomposition, the one in real time, we see that adding the term premium to the usual specification adopted in small macro models improves considerably the predictive performance of the model and also sharpens the precision with which the effects of the monetary policy stance on output is estimated. However, the positive and significant impact of the term premium on future growth in our preferred model needs some interpretation. We devote the next section to this issue.
4 A structural interpretation

The large literature that has examined the role of the yield spread in predicting future economic activity, and found it significant, has shown a clear tendency for interpreting the predictive power as dependent on the importance of the spread as a leading indicator for future monetary policy, which in turn is positively related to future economic activity. The two papers using an explicit decomposition of the term spread into the ER and the TP components has provided some evidence in favor of this interpretation. However, our results show that including the contemporaneous monetary policy stance makes the ER component lose its significance in predicting future GDP growth. Hence we are left with the problem of finding some motivation for the positive role of the term premium in predicting future economic activity.

Differently from Ang et al. (2004), Hamilton and Kim (2002) find a significant role for the TP component in predicting output growth. However these authors encounter problems in finding a structural interpretation for their result. They propose a simple model based on the time variation in the variance of policy rates. According to the proposed two-factor affine model of the term structure (see, for example, Campbell et al. (1987)), an increase in interest rate volatility at the end of an expansion could explain why the term premium falls at the end of the expansion and therefore a low term premium predicts low future output growth. Hamilton and Kim (2002) find that volatility in monetary policy has some explanatory power for the term premium but, unfortunately, cyclical movements in volatility do not have the impact on the term premium predicted by theory, and therefore they are not able to account for the usefulness of the term premium for forecasting GDP growth.

Our interpretation of the positive impact of the term premium on GDP growth is somewhat different: we see our best forecasting model as a reduced form of an aggregate demand relation in which monetary policy has a delayed effect on output which is non-linear. Such non-linearity depends on the fact that the impact of monetary policy on output is a function of the time-varying risk aversion of agents: when risk aversion is high, and hence the term premium is large, monetary policy has less power in determining output fluctuations than when the risk aversion, and hence the term premium, is low.

We provide some evidence on our proposed interpretation by looking first at reduced-form estimation of a forecasting model and by then explicitly considering a structural interpretation.
Our reduced-form evidence is illustrated in Table 3 and Figure 10. Table 3 reports in the first column the results of estimation of model 6.RT, in the second column the results from estimation of our preferred predictive model for GDP growth:

\[\Delta_4 y_{t+4} = \alpha_0 + \alpha_2 TP_t^{RT} + \alpha_3 i_1^t + \alpha_4 \pi_t + u_{1t}, \]
(14)

in which we have excluded from the specification the ER_t^{RT} factor, which was not significant. The third column in Table 3 contains the results of a re-specification of the prediction regression which illustrates the positive significance of the term premium in predicting future growth and the higher precision in measuring the effects of monetary policy generated by the inclusion of TP in the forecasting model:

\[\Delta_4 y_{t+4} = \alpha_0 + (\alpha_3 + \alpha_5 TP_t^{RT}) i_1^t + (\alpha_4 + \alpha_6 TP_t^{RT}) \pi_t + u_{2t}. \]
(15)

From the second and third columns of Table 10 we note that the respecified model does not lead to any important reduction in the forecasting performance but it helps in interpreting the role of the term premium in predicting output. In fact, the significance of the term premium is explained in terms of the impact of monetary policy on output: monetary policy has a stronger impact on output growth when the term premium is low.

These results are interesting but they call for a structural interpretation. Columns 4 and 5 of Table 3 provide some evidence in this direction. Our structural model of reference is the intertemporal Euler equation for output given by (see, for example, Fuhrer and Rudebusch (2004))

\[\tilde{y}_t = E_t \tilde{y}_{t+1} - \sigma \left[i_1^t - E_t \pi_{t+1} \right] + u_{3t}, \]
(16)

where \(\tilde{y}_t \) is the output gap (the deviation of output from potential, for which we use the measure from the Congressional Budget Office, available in the FRED database), \(E_t \tilde{y}_{t+1} \) is the expectation formed at time \(t \) of future output gap at time \(t+1 \), \(i_1^t \) is the three-month nominal interest rate, \(E_t \pi_{t+1} \) is the expectation of future inflation, and \(u_{3t} \) represents an aggregate demand shock. Naturally, the validity of this equation is limited to an economy without capital, durable goods investment, foreign trade
and government spending, in which case output equals consumption and the output dynamics is determined by the Euler equation pinning down the intertemporally optimal consumption choice. With the appropriate functional form for the underlying utility function, the parameter σ can be interpreted as the intertemporal elasticity of substitution which is equal to the inverse of the relative coefficient of risk aversion.

As shown by a number of authors (see, for example, Estella and Fuhrer (2002)) and as seen in column 5 of Table 3 (where we estimate equation (16) by GMM), simple descriptions of output dynamics as equation (16) are not very successful in matching the key dynamic features of the data and in pinning down the impact of monetary policy on output: the coefficient on the real interest rate is essentially zero. The disappointing predictive performance of the model based on the monetary policy stance only can be then interpreted as the other side of the same coin. However, our evidence on output prediction suggests that a simple modification of the traditional structure, one that considers the possibility of time-varying risk aversion, may be more successful in making the Euler equation for output closer to the actual dynamics in the data.

To explore this possibility, we estimate the following specification:

$$\tilde{y}_t = E_t \tilde{y}_{t+1} - \sigma_t [i_t^1 - E_t \pi_{t+1}] + u_t,$$

where

$$\sigma_t = \sigma_1 - \sigma_2 T P_{t}^{RT},$$

so the intertemporal elasticity of substitution (and therefore the effect of monetary policy) is directly related to the term premium. The results from estimation, reported in the last column of Table 3, witness some success in this direction. We estimate equation (17) by GMM, where inflation is instrumented by lags of all the variables included in the model and the future output gap is projected from a VAR for the output gap, the spread, the short-term interest rate and inflation. The coefficients on the real interest rate are now significant and their sign are in line with the prediction of the theory: as agents become more risk averse, the effect of monetary policy on output become weaker. Moreover, our best predictive model is easily interpreted as a reduced form of the forward-looking structure. In fact, equation (15) can be re-interpreted as a reduced form of equation (17), in which the rate of growth of potential output is proxied by a constant. The aggregate demand equation (16)
provides an interesting framework for interpreting the forecasting performance of the different models that we have considered in the previous section.

5 Conclusions

In this paper we have tried to bring together two strands of the empirical macro literature: the reduced-form evidence that the yield spread helps in forecasting output and the structural evidence on the difficulties of estimating the effect of monetary policy on output in an intertemporal Euler equation. We have shown that the inclusion of a short-term interest rate and inflation improves the forecasting performance of the spread for future output but the coefficients on the short rate and inflation are difficult to interpret using a standard macroeconomic framework.

A decomposition of the term spread into an expectations-related component and a term premium allows a better understanding of the forecasting model. In fact, the best forecasting model for output is obtained by considering the term premium, the short-term interest rate and inflation as a predictors. The expectations-related component loses its significance when it is considered jointly with the stance of monetary policy as a consequence of the high correlation between inflation and future expected monetary policy.

We provide a possible structural interpretation of these results by allowing for a time-varying risk aversion, linearly related to our estimate of the term premium, in an intertemporal Euler equation for output. This simple modification of the standard aggregate demand framework allows us to pin down more precisely the impact of the policy stance on output in a forward-looking model for output fluctuations. Allowing for time-varying risk aversion is an avenue of research that is being currently explored by several strands in the international macro and international finance literature (see, for example, Dungey et al. (2000) or Kumar and Persaud (2002)). Interestingly, the evidence that the impact of monetary policy on the business cycle is not constant over time but depends on other factors is in line with the verbal statements of monetary policymakers, although it has not yet been incorporated as a non-linear effect in a structural macro model. In particular, there is an ongoing debate on the importance of fiscal discipline a pre-condition for successful inflation targeting (see, for example, Sims (2003)). In this debate the interaction between monetary and fiscal policy comes through the intertemporal budget constraint
of the fiscal authority and its effect on expectations. Our specification of aggregate demand would allow for a more direct interaction between fiscal and monetary policy in the sense that fiscal fundamentals determines the term premium, which has an immediate effect on the impact of monetary policy on the business cycle. Of course, the non-linearity caused by the inclusion of the term premium in the output Euler equation makes the solution of a small macro model more complex and its effect can be evaluated only by simulation of an appropriately specified model. This is on our agenda for future research.
References

Table 1: Correlation across alternative decompositions of the yield spread

<table>
<thead>
<tr>
<th></th>
<th>S^{20}_t</th>
<th>ER^{HK}_t</th>
<th>ER^{APW}_t</th>
<th>ER^{RT}_t</th>
<th>TP^{HK}_t</th>
<th>TP^{APW}_t</th>
<th>TP^{RT}_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^{20}_t</td>
<td>1</td>
<td>0.57</td>
<td>0.53</td>
<td>0.21</td>
<td>0.12</td>
<td>0.13</td>
<td>0.46</td>
</tr>
<tr>
<td>ER^{HK}_t</td>
<td>1</td>
<td>0.72</td>
<td>-0.39</td>
<td>-0.44</td>
<td>-0.39</td>
<td>-0.20</td>
<td></td>
</tr>
<tr>
<td>ER^{APW}_t</td>
<td>1</td>
<td>0.63</td>
<td>-0.20</td>
<td>-0.74</td>
<td>-0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER^{RT}_t</td>
<td>1</td>
<td>-0.77</td>
<td>-0.58</td>
<td>-0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP^{HK}_t</td>
<td>1</td>
<td>0.61</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP^{APW}_t</td>
<td>1</td>
<td></td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP^{RT}_t</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Comparison of alternative models for predicting GDP growth

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6.HK</th>
<th>6.APW</th>
<th>6.AT</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>2.00</td>
<td>3.30</td>
<td>3.30</td>
<td>4.77</td>
<td>4.44</td>
<td>4.28</td>
<td>5.68</td>
<td>5.21</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.28)</td>
<td>(0.60)</td>
<td>(0.60)</td>
<td>(0.38)</td>
<td>(0.57)</td>
<td>(0.64)</td>
<td>(0.92)</td>
<td>(0.82)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>i_t^{20}</td>
<td></td>
<td>0.80</td>
<td>0.62</td>
<td>0.62</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.14)</td>
<td>(0.17)</td>
<td>(0.17)</td>
<td>(0.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_t^1</td>
<td></td>
<td>-0.80</td>
<td>-0.79</td>
<td>-0.80</td>
<td>-0.28</td>
<td>-0.41</td>
<td>-0.89</td>
<td>-0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.08)</td>
<td>(0.15)</td>
<td>(0.20)</td>
<td>(0.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_t</td>
<td></td>
<td>0.02</td>
<td>0.04</td>
<td>-0.10</td>
<td>0.17</td>
<td>0.43</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.12)</td>
<td>(0.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER_t</td>
<td></td>
<td>0.56</td>
<td>-0.31</td>
<td>-0.42</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.17)</td>
<td>(0.24)</td>
<td>(0.33)</td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP_t</td>
<td></td>
<td>0.70</td>
<td>0.68</td>
<td>0.48</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.20)</td>
<td>(0.28)</td>
<td>(0.16)</td>
<td>(0.28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.182</td>
<td>0.239</td>
<td>0.22</td>
<td>0.126</td>
<td>0.045</td>
<td>0.31</td>
<td>0.233</td>
<td>0.354</td>
<td>0.186</td>
</tr>
</tbody>
</table>

Note: Heteroscedasticity-consistent standard errors within brackets. All estimates are based on the sample 1975:1–2003:2, with the exception of Model 6.HK which has been estimated over the sample 1975:1–1999:2.
Table 3: Re-interpreting the best predictive model for GDP growth

<table>
<thead>
<tr>
<th></th>
<th>Model 6.3.RT</th>
<th>Eq. (14)</th>
<th>Eq. (15)</th>
<th>Eq. (16)</th>
<th>Eq. (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>5.21</td>
<td>4.36</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.82)</td>
<td>(0.37)</td>
<td>(0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>-0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.48</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>-0.78</td>
<td>-0.59</td>
<td>-0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td>0.41</td>
<td>0.30</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.10)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_5)</td>
<td></td>
<td></td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_6)</td>
<td></td>
<td></td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td></td>
<td></td>
<td></td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.354</td>
<td>0.344</td>
<td>0.334</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 6.3 is \(\Delta_4y_{t+4} = \alpha_0 + \alpha_1 ER_{t}^{RT} + \alpha_2 TP_{t}^{RT} + \alpha_3 i_t + \alpha_4 \pi_t + u_t \)

Equation (14) is \(\Delta_4y_{t+4} = \alpha_0 + \alpha_2 TP_{t}^{RT} + \alpha_3 i_t + \alpha_4 \pi_t + u_t \)

Equation (15) is \(\Delta_4y_{t+4} = \alpha_0 + (\alpha_3 + \alpha_5 TP_{t}^{RT}) i_t + (\alpha_4 + \alpha_6 TP_{t}^{RT}) \pi_t + u_t \)

Equation (16) is \(\tilde{y}_t = E_t \tilde{y}_{t+1} - \sigma [i_t - E_t \pi_{t+1}] + u_{3t} \)

Equation (17) is \(\tilde{y}_t = E_t \tilde{y}_{t+1} - (\sigma_1 - \sigma_2 TP_{t}^{RT}) [i_t - E_t \pi_{t+1}] + u_{4t} \)
Figure 1: Adjusted R^2 of alternative predictive models for GDP growth

Model 1 is $\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 S_{20} + u_t$

Model 2 is $\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 S_{20} + \alpha_2 i_{1t} + u_t$

Model 3 is $\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 S_{20} + \alpha_2 i_{1t} + \alpha_3 \pi_t + u_t$

Model 4 is $\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 i_{2t} + \alpha_2 \pi_t + u_t$

Model 5 is $\Delta_4 y_{t+4} = \alpha_0 + \alpha_1 i_{2t} + \alpha_2 \pi_t + u_t$
Figure 2: Actual and predicted GDP growth
Figure 3: Recursive estimates of the coefficients in the best predictive model (Model 3) for GDP growth
Figure 4: The yield spread and its alternative decompositions
Figure 5: Recursive estimates of coefficients in the predictive models for GDP growth based on the Hamilton-Kim decomposition
Figure 6: Recursive estimates of coefficients in the predictive models for GDP growth based on the Ang-Piazzesi-Wei decomposition
Figure 7: Recursive estimates of coefficients in the predictive models for GDP growth based on the Real-time decomposition.
Figure 8: Inflation and the sum of expected short rates ($ER_{t}^{RT} + i_{t}$)

Figure 9: Predictive performance of a model including short-term interest rates, inflation and the APW measure of the term premium
Figure 10: The effect on the predictive performance of including a measure of the term premium