Heterogeneous Class Size Effects: New Evidence from a Panel of University Students

Oriana Bandiera† Valentino Larcinese‡ Imran Rasul§

November 2008

Abstract

Over the last decade, many countries have experienced dramatic increases in university enrolment, which, when not matched by compensating increases in other inputs, have resulted in larger class sizes. Using administrative records from a leading UK university, we present evidence on the effects of class size on students’ test scores. We observe the same student and faculty members being exposed to a wide range of class sizes from less than 10 to over 200. We therefore estimate non-linear class size effects controlling for unobserved heterogeneity of both individual students and faculty. We find that (i) at the average class size, the effect size is \(-0.108\); (ii) the effect size is however negative and significant only for the smallest and largest ranges of class sizes and zero over a wide range of intermediate class sizes from 33 to 104; (iii) students at the top of the test score distribution are more affected by changes in class size, especially when class sizes are very large. We present evidence to rule out class size effects being due solely to the non-random assignment of faculty to class size, sorting by students onto courses on the basis of class size, omitted inputs, the difficulty of courses, or grading policies. The evidence also shows the class size effects are not mitigated for students with greater knowledge of the UK university system, this university in particular, or with greater family wealth.

Keywords: class size, heterogeneity, university education.

JEL Classification: A20, D23, I23.

*We thank Peter Arcidiacono, Decio Coviello, Michael Kremer, Lisa Lynch, Michele Pellizzari, Cecilia Rouse and numerous seminar participants for useful comments. We thank all those involved in providing the data. Selim Gulesci provided excellent research assistance. This paper has been screened to ensure no confidential information is revealed. All errors are our own.

†Department of Economics, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, United Kingdom; Tel: +44-207-955-7519; Fax: +44-207-955-6951; E-mail: o.bandiera@lse.ac.uk.

‡Department of Government, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, United Kingdom; Tel: +44-207-955-6692; Fax: +44-207-955-6352; E-mail: v.larcinese@lse.ac.uk.

§Department of Economics, University College London, Drayton House, 30 Gordon Street, London WC1E 6BT, United Kingdom. Telephone: +44 (0)20 7679 5853; Fax: +44 (0)20 7916 2775; E-mail: i.rasul@ucl.ac.uk.
1 Introduction

The organization of university education remains in the spotlight both in academia and policy circles. Recent research has stressed the importance of higher education in providing positive externalities within firms [Moretti 2004], within local labor markets [Glaeser et al 1992], and in fostering economy wide growth as a whole [Aghion et al 2007]. Concurrently, most OECD countries have adopted supply side policies that have led to dramatic increases in university enrolment during the last decade.\footnote{For example, between 1998 and 2005 the US experienced a 30% increase in student enrolment. The corresponding figure for the UK was 18%. Within the OECD, the UK is actually at the low end of enrolment growth – for instance, Finland, Ireland, the Netherlands, and Sweden have all experienced greater proportionate increases in enrolment.}

To the extent that universities cannot instantaneously adjust all relevant inputs in response to such increases in enrolment – such as the number of faculty or teaching rooms – students inevitably face larger class sizes, the effect of which is not well understood. While the established literature on class size effects in primary and secondary schools provides useful guidance, further investigation is needed in the context of university education as the range of class sizes is typically larger than at other tiers of the education system, the underlying sources of variation in class size used for identification differ, and the mechanisms that drive class size effects are likely to differ as well.\footnote{A variety of experimental and quasi-experimental empirical strategies have been used in primary and secondary education settings to identify the causal effect of class size on test scores. The results from this literature remain mixed – Hanushek [2003] and Hoxby [2000] find no class size effects, while Krueger [1999] and Angrist and Lavy [1999] report negative effects.}

To identify the effect of class size on university student’s academic achievement, we exploit administrative records from a leading UK university that has experienced a 50% increase in enrolment since 1995. The UK higher education system awards three types of degree. Undergraduate degrees are awarded upon completion of a three year course, postgraduate (or masters’) degrees after one further year of study, and doctoral degrees upon completion of further courses and research. Figure 1A shows that since 1995, undergraduate enrolment in the UK has risen by over 30%. Over the same period, postgraduate enrolment has increased even more dramatically. Figure 1B shows that enrolment increases have outstripped increases in full time faculty, implying students are now likely to be exposed to larger class sizes, a pattern that is more pronounced for postgraduate students.\footnote{In terms of external validity, the changes in enrolment taking place in the university we study are not extreme for universities in the UK. For example, York University has experienced a near doubling of student numbers since 1995, Imperial college has witnessed similar increases, and no university is observed with enrolment declines since 1995.}

In this paper we identify the effect of class size on the academic achievement of postgraduate students – the UK equivalent of US college seniors. We measure academic achievement through the student’s end of year final exam performance. As we will explain later in more detail, test scores are a good measure of student’s performance and learning both because they are not curved, and hence measure the students’ absolute performance, and because, unlike in many North American universities [Hoffman and Oreopoulos 2006], faculty have neither the incentive nor the possibility to strategically manipulate test scores to boost student numbers or to raise their own student evaluations. Class size is measured as the number of students enrolled to take the end of year exam. We deliberately focus on identifying the causal effect of student enrolment, as opposed to attendance [Romer 1993, Durden}
and Ellis 1996, Arulampalam et al 2007], because enrollment is a policy parameter that universities can measure and manipulate relatively easily. In contrast, it is orders of magnitude more costly for universities to measure and regulate the physical attendance of each student in each of their classes.

There are several mechanisms through which class size can affect the behavior of students and faculty. These behavioral changes can occur inside and outside the lecture theatre. For example, students may be less attentive in larger classes, or may compensate for larger classes by exerting more effort either in the library or with their peers. Faculty may be better able to identify the ability and interests of the median student in smaller classes, or be more able to answer students’ questions directly. Outside of the lecture theatre, faculty might devote more time preparing the delivery of lectures and organization of materials for larger classes, or there may be congestion effects if faculty have less time to devote per student during office hours.\(^4\)

Our administrative data has three key features that we exploit to identify the effect of class size on academic achievement. First, each student takes on average six courses within the same subject area and there is variation in the class sizes across courses they are exposed to. This allows us to present within student estimates of class size controlling for individual time invariant characteristics that equally affect performance across courses such as the individual’s underlying ability, employment options upon graduation, and past educational investments.

Second, there is considerable within student variation in class size. The median student has a difference between her largest and smallest class sizes of 56, and more than 20% of students have a difference of at least 100. We therefore estimate whether class size effects are non-linear over a wide range of class sizes, from less than 10 to over 200. This is important given some potential mechanisms for class size effects are only relevant, on the margin, in the smallest or largest classes.

Third, we observe the same faculty member teaching different class sizes. We are thus able to control for faculty fixed effects, which capture the faculty member’s teaching style or motivational skills. We use this aspect of the data to infer how faculty may be altering their behavior as they teach courses of very different size.

Our main results are as follows. First, the baseline within student and teacher estimates imply a negative and significant effect size of \(-.108\). This implies that if a student were to be reassigned from a class of average size to a class which was one standard deviation larger, the test score of the same student would fall by \(.108\) of the within student standard deviation in test scores.\(^5\)

\(^4\)There is mixed evidence from primary schools on whether student behaviors directly related to learning – such as attentiveness – are affected by class size [Finn et al 2001]. There is more consistent evidence that in smaller classes, disruptive behavior decreases and collaborative behavior increases [Johnston 1990, Blatchford et al 2005], which is in line with the theoretical predictions of Lazear [2001]. In university settings, there is evidence that students attitudes towards learning tends to be negatively affected by larger classes [Bolander 1973, Feldman 1984, McConnell and Sosin 1984]. On teacher behavior, there is evidence from primary school settings that teachers know students better in smaller classes [Johnston 1990, Boyd-Zaharias and Pate-Bain 2000, Blatchford et al 2005] but evidence on faculty behavior across class sizes in university setting remains scarce.

\(^5\)The magnitude of this effect is at the low end of previously documented class size effects in primary and secondary education settings. Krueger [1999] uses data from Project STAR that randomly assigned teachers and students to different class sizes. Using student level estimates with school fixed effects he reports an effect size of \(-.20\) for kindergarten and \(-.28\) for first grade. Angrist and Lavy [1999] use Maimonides rule in Israeli schools as the basis of
Second, the effect of class size on test scores is highly non-linear across the range of class sizes we observe. More precisely, we find a large negative effect going from small (1-19) to medium (20-33) class sizes, a close to zero effect for further increases over a wide range of intermediate class sizes up to 103, and from there on an additional negative effect in the largest class sizes (104-211). This suggest there are at least two underlying mechanisms at play, one that explains the effect at small class sizes, and one for the largest class sizes. The finding also helps rule out that class size is capturing other omitted inputs. A priori, most omitted inputs, such as the audibility of the lecturer or congestion effects outside of the lecture theatre, should indeed be monotonically related to class size. To the extent that a robust non-linear relationship between class size and test scores exists, omitted inputs alone are unlikely to explain the full pattern of class size effects.\(^6\)

Third, using quantile regression methods we find that in the smallest classes, namely less than 33, larger class sizes uniformly reduce conditional test scores of all students. In the intermediate range of class sizes from 34 to 103 on which the effect size is zero, the quantile regression estimates also confirm that there are no class size effects on the distribution of test scores as a whole. However, the quantile regression estimates show that increases in class size when classes are larger than 104 to begin with, significantly reduce tests scores and have a greater detrimental effect on test scores at the top end of the distribution. This suggests there exists an important complementarity between student ability and class size. The highest ability students would benefit the most, in terms of academic achievement, from any reduction in class sizes, when class sizes are very large to begin with.

Fourth, we use information on teachers’ assignments to classes and on students’ characteristics to shed light on the underlying mechanisms for the class size effect. We find no evidence that departments purposefully assign faculty of differing quality to different class sizes. We also find no evidence that faculty members alter their behavior when exposed to different class sizes, consistent with the preparation and delivery of lectures being independent of the number of students taught.

Finally, we find the class size effect does not vary with proxies for students’ wealth. This casts doubt on the relevance of infrastructure congestion in explaining the documented class size effect, namely if larger classes resulted in lower grades because students had more limited access to library books or computer laboratories, the effect should have been smaller for students who can purchase these inputs privately. Moreover, we also find the class size effect does not vary with student’s familiarity with this particular university or with the UK system in general. This casts doubts on

\(^6\)Our results are in contrast to historic evidence on class size effects in universities, summarized in the meta-analyses of Williams et al [1985] and Pascarella and Terenzini [1991], as both suggest little effect of class size on student performance. More recently, using data on first year undergraduates in a leading university in Spain, Machado and Vera Hernandez [2008] exploit the quasi-random variation in class size induced by the assignment of students to classes on the basis of their surname, and find no effect of class size on the likelihood that students sit end of year exams, that they pass the exam, or on their overall exam grade. In line with our results, they find this to be the case over a range of class sizes from 50 to 70. Relatedly, Duflo et al [2007] use a randomized field experiment to reduce class sizes in Kenyan primary schools from 80 to 46 – they find little effect on test scores but large reductions in teacher effort.
the relevance of mechanisms that work through the information available to students, such as their awareness of other local resources, such as other libraries in the area, or their knowledge of the characteristics of faculty, courses, or departments.

Against a backdrop of rapidly increasing enrolment rates in the UK – as in much of the OECD – our analysis has important policy implications for university education. While there is robust evidence of a negative class size effect on the academic achievement of students, we also document there exists a wide range of class sizes over which, on the margin, targeting resources to reduce class sizes will have little impact on test scores. This suggests that in this range it would be more efficient to spend resources on other inputs. However, eliminating the largest classes – namely those over 100 – not only will raise test scores, it will do so to a greater extent for the most able students.

The paper is organized as follows. Section 2 describes the empirical context, data sources, and presents descriptive evidence on class sizes and test scores. Section 3 describes the empirical method. Section 4 presents our baseline class size effect estimates and addresses econometric concerns. Section 5 presents evidence on whether these effects are heterogeneous across class sizes and quantile regression estimates of whether marginal changes in class size have heterogeneous effects across students. Section 6 presents evidence on some mechanisms that might be driving the class size effect. Section 7 discusses policy implications. Further results and robustness checks are in the Appendix.

2 Context and Data

2.1 Institutional Setting

Our analysis is based on administrative data on individual students from a leading UK university, for the academic years 1999/00 to 2003/04. The UK higher education system comprises three tiers – a three-year undergraduate degree, a one or two-year M.Sc. degree and Ph.D. degrees of variable duration. We focus on full time students enrolled on one-year M.Sc. degree programs. These students will therefore have already completed a three year undergraduate degree program at some university.7

Over the academic year each student must obtain a total of four credits, one of which is assigned upon completion of a long essay, and the remaining three upon the completion of final examinations related to taught courses. As each course is worth either one or half a credit, the average student takes 6.3 courses. Taught courses are assessed through an end of year sit down examination and all final examinations take place over the same two week period in June.8

The university has 23 academic departments, offering 125 degree programs in total. Students enrol onto a specific degree program and once enrolled, they cannot move to other programs or

7 Students are not restricted to only apply to M.Sc. degree programs in the same field as that in which they majored in their undergraduate degree. In our sample, 17% of students studied for their undergraduate degree at the same institution, and around 17% have previously studied in the UK.

8 Some courses are also partially assessed through coursework – for such courses, typically no more than 25% of the final mark stems from the coursework component. Throughout the empirical analysis we focus on examined courses and control for a set of course characteristics.
departments. Each degree program has its own associated list of core courses – that are either compulsory or offering a very constrained choice – as well as a list of elective courses. The latter might also include courses belonging to other programs or departments. For instance, a student enrolled in the M.Sc. degree in economics can choose between a basic and an advanced version of the core courses in micro, macro, and econometrics plus an elective course from a list of economics fields and a shorter list from other departments such as finance. The logistics and teaching for each course are the responsibility of a specific department. There is typically only one section for each course, so students do not have the possibility to sort into smaller sections of the same course. Only a very small percentage of students enrolled on M.Sc. degree programmes continue to Ph.D. level studies in the same institution.

2.2 Data Sources

The university’s administrative records contain information on each student’s academic performance on each course, as well as some individual background characteristics. Our sample covers 10,873 students enrolled full-time on one year M.Sc. programs over academic years 1999/00-2003/04, on 626 different courses. There are a total of 40,851 student-course level observations and the primary unit of analysis is student \(i \) in course \(c \) in academic year \(t \). The administrative records identify all students enrolled on the same course in the same academic year. Hence we are able to construct measures related to the composition of the class on the basis of demographic characteristics as well as study related characteristics such as the fragmentation of students across different enrolment departments, and whether the course is a core or elective course for any given student. Finally, we coded university handbooks as these provide information on the assignment of faculty to each course in each academic year. We identify 794 teaching faculty and their rank – assistant, associate or full professor.

2.3 Key Variables

2.3.1 Test Scores

Our main outcome variable is the final exam performance of student \(i \) on course \(c \), \(y_{ic} \), scaled from 0 to 100. This translates into the final classmarks as follows – grade A corresponds to test scores of 70 and above, grade B corresponds to 60-69, grade C to 50-59, and a fail to 49 or lower.\(^9\)

In this institutional setting final exam scores are a good measure of student’s performance and learning for a number of reasons. First and foremost, test scores are not curved so they reflect each individual’s absolute performance on the course. Grading guidelines issued by the departments\(^9\)

\(^9\)Despite degree programs in this university being highly competitive to enter and students paying amongst the highest fees of any UK university, we still observe students failing courses – 3% of observations at the student-course-year level correspond to fails. The incidence of dropping out – namely students enrolling onto programs and not sitting exams – is very low. Finally, all exams take place at the end of the academic year so students are not selected out of the sample, by having failed mid terms for example.
indeed illustrate that exam grading takes place on an absolute scale. Figure 2 provides further
evidence on the fact that grades are not curved. Each vertical bar represents a particular course
in a given academic year, and the shaded regions show the proportion of students that obtain each
classmark (A, B, C, or fail). For ease of exposition, the course-years are sorted into ascending order
of B-grades, so that courses on the right hand side of the figure are those in which all students obtain
a test score of between 60 and 69 on the final exam. We note that, in line with marks not being
curved, there exist some courses on which all students obtain the same classmark. On some courses
this is because all students obtain a B-grade, and on other courses all students achieve an A-grade.
In 23% of course-years, not a single student obtains an A-grade. In addition, the average classmark
varies widely across course-years and there is no upper or lower bound in place on the average grade
of students in any given course-year. We later present evidence that the identity of faculty teaching
the course matters for the exam performance of students, again contrary to grading on a curve.

Second, unlike in many North American universities, faculty do not have incentives to manipulate
the exam scores or course content to boost student numbers or to raise their own student evaluations
[Hoffman and Oreopoulos 2006]. In line with this, we note that smaller courses are not systematically
more likely to be discontinued, all else equal. Moreover, manipulating test scores is difficult as exam
scripts are double blind marked by two members of faculty (and sent to a third marker, external to
the university, in case of disagreement over the final score), of which typically only one teaches the
course.

2.3.2 Class Sizes

We define class size as the number of students formally enrolled to take the end of year exam. This
can diverge from number of students physically present in the lecture theatre either because there are
students that decide to audit the class without formally enrolling onto it or because of non-attendance
of enrolled students.

We deliberately focus on identifying the causal effect of student enrolment, as opposed to student
attendance, on exam performance because enrollment is a policy parameter that universities can

10 For example, the guidelines for one department state that an A-grade will be given on exams to students that
display “a good depth of material, original ideas or structure of argument, extensive referencing and good appreciation
of literature”, and that a C-grade will be given to students that display “a heavy reliance on lecture material, little
detail or originality”.

11 An alternative check on whether test scores are curved is to test whether the mean score on a course-year differs
from the mean score across all courses offered by the department in the same academic year. For 29% of course-years
we reject the hypothesis that the mean test score is equal to the mean score at the department-year level. Similarly
for 22% of course-years we reject the hypothesis that the standard deviation of test scores is equal to the standard
deviation of scores at the department-year level.

12 More precisely, we find that the existence of course c in academic year t does not depend on enrolment on the
course in year $t - 1$, controlling for some basic course characteristics and the faculty that taught the course in $t - 1$.

13 In addition to lectures, students are required to attend smaller tutorials where problem sets are worked through.
In many cases Ph.D. students run tutorials. The focus of this paper is not to test whether tutorial sizes or attendance
affect exam performance because in this institution, many tutorial sizes are capped at 15 by Maimonides rule, so there
is little variation to exploit. Martins and Walker [2006] find no effect of tutorial size on test scores for economics
undergraduates at the University of Warwick.
measure and manipulate relatively easily. In contrast, it is more costly for universities to measure and regulate the physical attendance of each student in each of their lectures. In addition, the number of students enrolled on the course captures the competition each student faces for resources both inside lectures – such as the ability to hear the teacher or ask her a question – as well as competition for resources outside of lectures – such as library books, access to faculty during office hours, and computing resources.

We note that the estimated effect of enrolment provides a lower bound on the effect of attendance on test scores if the majority of enrolled students do attend. While we do not have direct evidence on this, the fact that students in this university pay among the highest annual fees in the UK, suggests that the majority of students are likely to attend, in line with evidence from elite universities in the US and Spain [Romer 1993, Machado and Vera Hernandez 2008].

3 Descriptives and Empirical Method

3.1 Descriptives

Table 1 presents descriptive evidence on our two key variables – test scores and class sizes. The average test score is 62.0, the standard deviation in test scores between students is 5.00, and most relevant for our analysis, the within student standard deviation in test scores is almost as large, 4.37. These test score statistics are very similar when we consider core and electives separately. We define the within student test score gap as being the difference between student i’s highest and lowest test score across all her examined courses. Figure 3A then shows a histogram of the within student test score gap. The median individual has a test score gap of 9, and around 20% of students have a test score gap of at least 15. In short, there is considerable variation in test scores within the same student to explain.

The remainder of Table 1 shows that the average class size is 56.2, and the within student standard deviation in class size is 32.3 – comparable in magnitude to the standard deviation in class sizes between students, 33.2. Core courses tend to have larger class sizes than electives, although within each course type, the same student is exposed to enormous variation in class sizes, despite courses being in the same subject area. We define the within student class size gap as the difference between student i’s largest and smallest class size across all her courses. Figure 3B then shows a histogram of the within student class size gap. The median individual has a class size gap of 56, and

14 Assume the number of students physically present on course c (Z_c) relates to the number of enrolled students (N_c) as $N_c = Z_c + w_c$, where $\text{var}(w_c) = \sigma_w^2$, and $\text{cov}(Z_c, w_c) = \sigma_{wz}$. Suppose we wish to estimate the effect of attendance on test scores, $y_{ic} = \beta Z_c + u_{ic}$, using a linear regression of test scores on class size, $y_{ic} = \beta N_c + \varepsilon_{ic}$ and $\text{cov}(u_{ic}, \varepsilon_{ic}) = 0$. The estimated parameter from this class size regression relates to the true parameter of interest as $\text{plim} \hat{\beta} = \beta - \frac{\sigma_{wz} + \sigma_z^2}{\sigma_z^2 + \sigma_w^2} \beta$. If enrolment differs from attendance more in larger classes ($\sigma_{wz} > 0$), $\hat{\beta}$ is biased downwards. If $\sigma_{wz} < 0$ then $\hat{\beta}$ may be biased upwards. Assume in this second more problematic case that $w_c = -\delta Z_c$ (so $\sigma_{wz} < 0$). We then require $\delta > 1$ for $\hat{\beta}$ to be overestimated. Hence the estimated parameter from the class size regression provides a lower bound on the effect of attendance on test scores if the majority of enrolled students attend.
more than 20% of students have a class size gap of at least 100, and so are exposed to class sizes in all five quintiles of the class size distribution.15

The underlying basis for our analysis is that universities cannot instantaneously adjust on all margins in response to increases in student enrolment, as documented in Figure 1. If universities and departments could costlessly adjust all inputs and they aimed to maximize test scores, then an envelope theorem argument would imply class sizes would be set optimally and there would be no effect on the margin of class size adjustments on test scores [Lazear 2001]. In the Appendix we provide evidence in support of the fact that departments cannot fully adjust inputs in response to changes in enrolment over time. As a consequence, increases in enrolment translate into significantly larger class sizes, which in turn suggests plausibly non-zero class size effects can exist in this setting.

\subsection*{3.2 Empirical Method}

We provide within student estimates of the effect of class size on individual test scores using the following panel data specification,16

\[y_{ic} = \alpha_i + \gamma N_c + \delta X_c + \lambda H_c + \sum_j \mu_j f_{jc} + u_{ic}, \]

where \(y_{ic} \) is the test score of student \(i \) on course \(c \), \(\alpha_i \) is a fixed effect for student \(i \) that captures the individual’s underlying ability, motivation, employment options upon graduation, and past educational investments. Exploiting within student variation allows us to control for a number of sources of potential bias. For example, the most able students may sort out of the largest class sizes, which if student fixed effects were not controlled for, would cause \(\hat{\gamma} \) to be downwards biased. Since the effect of class size is identified by comparing the performance of the same student in different courses, it is important to stress that courses belong to the same degree programme and hence cover similar topics, require students to develop similar skills, and use similar methods of assessment.

\(N_c \) measures the class size as defined by the number of students enrolled on course \(c \). The course controls in \(X_c \) capture other determinants of test scores, including the number of faculty that teach on the course, the share of them that are full professors – that may reflect the difficulty of the course, the number of credits obtained for completing the course, whether the class is a core or elective course, and the share of the overall course mark that is attributed to the final exam.

The course controls \(H_c \) relate to composition of the peer group in the course. In particular we control for the share of women on the course, the mean and standard deviation of students’ ages, the ethnic fragmentation of students, the departmental fragmentation of students, the share of students

15Although departments could informally cap class sizes, there are no stated official guidelines on whether and how this is possible. In addition, we do not observe any spikes in the class size distribution at focal values.

16As we have no information to be able to condition on past exam performance, we are not estimating a value added model. Such models have been criticized on various grounds [Todd and Wolpin 2003, Rothstein 2007]. Moreover, the type of specification we estimate for the effect of class size on the level of test scores has been argued to better reflect the total effects of class size [Krueger 1999].
who completed their undergraduate studies at the same institution, and the share of British students. Controlling for the composition of students on the course, H_c, addresses concerns that students on larger courses are likely to have a more heterogeneous group of peers, and a more diverse group of peers may have positive or negative effects on individual test scores.\footnote{Students can belong to one of the following ethnicities – white, black, Asian, Chinese, and other. The ethnic fragmentation index is the probability that two randomly chosen students are of different ethnicity. The departmental fragmentation index is analogously defined. We experimented with a number of alternative controls in X_{ct} and H_{ct}—the reported results are robust to small changes in these sets of variables. Estimates of peer effects in university settings have been previously identified using alternative experimental or quasi-experimental empirical strategies [Sacerdote 2001, Zimmerman 2003, Arcidiacono and Nicholson 2005].}

University handbooks provide information on the assignment of faculty to each course in each academic year. We use this information to control for a complete series of faculty dummies, $\sum_j \mu_j f_{jc}$, such that f_{jc} is one if faculty member j teaches on course c, and zero otherwise. These capture factors that cause the academic performance of all students of faculty member j to be affected in the same way, such as the faculty member’s teaching style or motivational skills.

Finally, the error term, u_{ic}, is clustered by course-academic year to capture common unobservable shocks to students’ end of year exam performance such as the difficulty of the final exam script.\footnote{We also experimented with alternative forms of clustering such as at the student level, or two way clustering at the student-department level, and with weighting the observations by the number of credits the course is worth. All reported results are robust to these variations in specification.}

In line with the existing literature, the parameter of interest is the effect size, $\hat{\gamma} \left(\frac{sd(N_{ic})}{sd(y_{ic})} \right)$, where both standard deviations are calculated within student because that is the primary source of variation exploited to identify γ in (1). Intuitively, the effect size measures the share of the within student standard deviation in test scores that is explained by a one standard deviation increase from the mean class size.\footnote{To recover the corresponding effect size that is normalized by overall standard deviations, we note that the overall standard deviation in test scores (class sizes) is 6.67 (46.3). As both of these increase in approximately the same proportion over the within student standard deviations, the implied effect sizes will be similar whether the overall or within student standard deviations are used.}

It is important to be precise about the mechanisms that should be captured by our reduced form class size effect estimate, $\hat{\gamma}$. These relate to any behavioral changes – of students or faculty – that stem from being exposed to different class sizes. The changes in behavior that we wish to capture can occur either inside or outside the lecture theatre itself. For example, students may be less attentive to faculty lecture delivery in larger classes, or may compensate for larger classes by exerting more effort outside of lecture times, either in the library or with their peers [Bolander 1973, Feldman 1984, McConnell and Sosin 1984]. Inside the lecture theatre, faculty may be better able to identify the ability and interests of the median student in smaller classes, or be more able to answer students’ questions directly. Outside of the lecture theatre, faculty behavior may be affected if they spend more time preparing the delivery of lectures and organization of materials for larger classes, or there may be congestion effects if faculty have less time to devote per student during office hours.\footnote{How much of any class size effect operates through changes in the likelihood to attend is unclear. As described earlier, our class size effects are likely to underestimate any effect of attendance on enrolment. Studies on the determinants of attendance, and specifically how class size relates to attendance are rare. Romer [1993] presents evidence on economics majors from three elite universities in the US that suggests attendance rates are slightly positively related.
4 Empirical Results

4.1 Baseline Estimates

Table 2 presents our baseline estimates of the effect of class size on test scores. Column 1 shows that unconditionally, larger class sizes are associated with significantly lower test scores. The effect size is -0.074 and significantly less than zero. Hence, evaluated at the mean, a one standard deviation increase in class size reduces individual test scores by 0.074 standard deviations of the overall distribution of test scores.

Column 2 shows this effect to be robust to conditioning on course-academic year factors, X_c. Moreover we note that the magnitude of the class size effect is large relative to other observables controlled for such as the total number of faculty that teach the course, the share of them that are full professors, and the proportion of the overall exam mark that is attributed to the final exam mark.

Column 3 then controls for the student fixed effects, α_i. The effect size is slightly larger in absolute value than the earlier specifications, at -0.082. This implies that if a student were to be reassigned from a class of average size to a class which was one standard deviation larger, the test score of the same student would fall by 0.082 of the within student standard deviation.\(^{21}\)

Two points are of note. First, the student fixed effects account for around 56\% of the overall variation in test scores. Hence fixed student characteristics such as their underlying ability or motivation to succeed are the single most important determinant of academic achievement. Second, given the similarity of the implied effect size with and without controlling for student fixed effects, the data suggests sorting of students by ability into courses is not an important determinant of the effect of class size on test scores. While we have no doubt that there is a great deal of sorting of students into universities and into degree programs within the same university – just as there is sorting of children into primary and secondary schools – the data from this setting suggests there is no strong element of sorting by students into courses on the basis of class size.\(^{22}\)

One reason why class sizes vary is because some courses offered by a department are popular among students enrolled on degree programs in other departments, and their degree program regulations permit them to take these courses outside their own department. If student characteristics vary more between than within degree programs, then one concern is that in larger classes the diversity among students is mechanically larger. We therefore need to ensure that any class size estimates

\(^{21}\)As noted earlier, we focus on reporting effect sizes that are normalized by the within student standard deviation as that is the primary source of variation in class sizes we exploit. As the overall standard deviation in test scores (class sizes) is 6.67 (46.3), the effect size when the overall standard deviations are used instead of the within standard deviations is not much changed at -0.082.

\(^{22}\)Arcidiacono [2003] estimates a dynamic model of college and major choice to understand how students sort onto degree programs. While he reports there to be considerable variation in the returns to different majors, the majority of sorting occurs because of individual preferences for particular majors in college. Our data is consistent with such sorting by preferences – rather than class size – also explaining the choice of courses within any given program.

11
are not merely picking up any detrimental effects that student diversity may have on test scores. Such negative effects of student diversity may arise from, for example, faculty having difficulty in identifying the ability of the median student and tailoring their teaching appropriately.\footnote{On the other hand increased diversity among students may actually offset any negative effects of class size so that baseline estimates are upward biased. This would be the case for example if the most able or motivated students take courses outside their department and these types of student impose positive externalities onto their peers.}

Column 4 addresses this concern by additionally controlling for a series of characteristics of students in the class, \(H_c \). The result shows the class size effect to be very similar to the earlier estimates once the composition of the class is controlled for. This may be because the diversity of students in university classes has little effect on academic achievement, or that the positive and negative effects of having diverse peers approximately cancel out on average.

An important concern with these results is that departments may assign faculty to courses on the basis of class size. For example, departments may systematically assign stricter faculty to larger classes in order to keep discipline, and larger courses may in turn be more difficult. As in Lazear [2001], if class size and stricter discipline are substitutes, this confounds identification of any class size effect. To check for this Column 5 estimates (1) adding a complete series of faculty dummies, \(\sum_j \mu_j f_{jc} \), as defined previously.\footnote{Rothstein [2007] shows that such teacher effects are not identified in value added models if teachers are non-randomly assigned to students over time, say because of ability tracking or parental pressure on school principals. In this setting such mechanisms are absent and we exploit the contemporaneous variation in class sizes and teaching faculty a student is exposed to in the same academic year. Each faculty member typically teaches on one or two courses each academic year. There is sufficient variation in the data to allow us to estimate \(\mu_j \) for 550 teaching faculty in total.}

The parameter of interest is \(\hat{\gamma} = -0.015 \) which is significantly different from zero and implies an effect size of \(-0.108\). Comparing the estimates with and without controlling for faculty dummies suggests these dummies are not much correlated with class size.\footnote{Further analysis shows that without controlling for the students fixed effects, \(\alpha_i \), the teaching faculty dummies explain around 9\% of the variation in student test scores. Hence characteristics of faculty members that have an equal effect on all students – such as their ability or motivational skills – are less important that student ability in explaining the variation in test scores as expected, although they remain more important than other measurable factors.} To check further for any evidence of departments non-randomly assigning faculty to class sizes, we re-estimated (1) without controlling for class size, \(N_c \). We found no significant relationship between faculty quality in this specification, as measured by \(\hat{\mu}_j \), and the average class size the faculty member teaches – the line of best fit between the two has a slope coefficient not significantly different to zero. This suggests – (i) faculty are not assigned to class sizes on the basis of their underlying quality or style; (ii) faculty that are predominantly assigned to smaller classes do not systematically reward students with higher test scores, say because they can more easily observe students’ effort throughout the academic year; (iii) students do not sort into classes on the basis of the quality or style of teaching faculty.

The reported effect sizes facilitate comparison between this setting of tertiary education vis-à-vis estimates in the literature from primary or secondary school settings. However, an alternative measure of the magnitude of the effect in this specific setting is in terms of a coarser classification of exam performance as embodied in the following classmarks – an A-grade, corresponding to a final
exam score of 70 and above, a B-grade (60 to 69), a C-grade (50 to 59), and a fail (49 or lower). This classification is relevant because UK employers make conditional offers to students on the basis of this classification rather than continuous test scores. Similarly, entry requirements for Ph.D. or professional qualifications courses are typically also based on this classification.

To assess the impact of class sizes on this metric of performance, we use a linear probability model analogous to (1) to estimate the effect of class size \(N_c\) on the likelihood student \(i\) obtains an A-grade on course \(c\) in academic year \(t\). We find this effect to be negative and significant. The magnitude of the coefficient implies that, evaluated from the mean, a one standard deviation increase in class size reduces the likelihood that the student obtains an A-grade by 1.1%. This is relative to a baseline probability of 13.4% across all courses. Hence class size variations can have long run effects on individuals over their life cycle as it affects their initial labor market outcome upon graduation, and their opportunities to continue into doctoral programs or to study for professional qualifications.\(^{26}\)

4.2 The Salience of Class Size

We present two pieces of evidence to assess whether the issue of class size is salient for students. First, we test whether class size is negatively related with students’ satisfaction. To do so, we use students’ reports of overall satisfaction with their course, as reported in student evaluations after the last lecture and before the final exam. This information is available only at the departmental-academic year level, not at the level of each course. With this caveat, we note that, as shown in Column 1 of Table 3, M.Sc. students are significantly less satisfied in departments with larger average class sizes, controlling for the overall number of students enrolled in the department. As a check on this, Column 2 shows there is no correlation between the reported satisfaction of undergraduates and average class sizes at the M.Sc. level, so the results are unlikely to be picking up that student satisfaction differs systematically across departments. These results are in line with evidence from other university settings that students attitudes towards learning tends to be negatively affected by larger classes [Bolander 1973, Feldman 1984, McConnell and Sosin 1984].

Second, we test whether the magnitude of the class size effect is correlated with the number of courses students can choose from. The rationale of this test is as follows. If students are aware that test scores are on average lower in larger classes, we expect them to choose smaller classes, other things equal. Whether it is feasible for students to substitute away from larger courses depends on the overall availability of courses. To measure this we exploit the fact that each of the 104 degree programs has its own rules determining the set of courses from which students have to take their core and elective courses. Degree programs vary in the number of available core courses – from one to thirteen, and the average program has 1.56 available core courses. Typically, students will have to choose one or two core courses from this list. The average program has 3.05 available electives, from

\(^{26}\)In this linear probability model, 2.3% of the predicted values lie outside the zero-one interval, and the standard errors allow for the error term to be heteroskedastic.
which typically two or three can be chosen.27 Denoting L_i as the number of available courses to the student on her degree program, we then estimate the following panel data specification for core and elective course separately,

$$y_{ic} = \alpha_i + \gamma_0 N_c + \gamma_1 (N_c \times L_i) + \delta X_c + \lambda H_c + u_{ic}. \quad (2)$$

To the extent that students prefer smaller classes, we should find that any negative class size effects ($\hat{\gamma}_0 < 0$) are ameliorated by a larger choice set ($\hat{\gamma}_1 > 0$). As most faculty teach on both core and elective courses – rather than on many core courses for example – there is insufficient variation to identify the set of faculty dummies.28

Columns 3 and 4 of Table 3 estimate specification (2). The results show that the class size effect is less pronounced on cores when there are more core courses for students to choose from ($\hat{\gamma}_0 < 0$, $\hat{\gamma}_1 > 0$). There is however no such ameliorating effect of greater choice on the class size effects among elective courses ($\hat{\gamma}_0 < 0$, $\hat{\gamma}_1 = 0$), in line with the fact that students have far greater choice in their elective courses to begin with. Overall, the fact that greater choice helps to offset negative class size effects, suggests that students are aware of these effects and avoid them when possible. However, we note that departments are unable to provide students with sufficient course choice to fully offset the negative class size effects – the implied effect sizes remain negative and significant even for those students with the greatest choice of courses, as reported at the foot of Table 3.

4.3 Econometric Concerns

Identification of the causal effect of class size on students’ performance is confounded by the possible presence of factors that are correlated to both variables. Decomposing the error term into two components, $u_{ic} = \varepsilon_{ic} + \varepsilon_c$, makes precise that class size and performance might be spuriously correlated because of omitted factors that vary at the student-course level or at the course level.

For instance, students may enrol into larger classes only for subjects for which they are intrinsically less motivated and seek smaller classes for subjects they care more about. To the extent that more motivation results in higher effort, this type of selection downwards biases any estimated class size effect. Note that, however, this and all other spurious mechanisms due to endogenous sorting by class size can only be at play if students have the option to choose among classes of different sizes for similar topics. If our previous estimates were spuriously generated by endogenous sorting we should then find a larger effect for students who have access to a larger range of substitutes. The fact that the effect is actually strongest when the availability of substitutes is low (Columns 3 and 4, Table 3) casts doubt on the relevance of this mechanism in this setting. This is also in line with the evidence on students’ course choices in universities in North America presented in Paglin and Rufolo [1990].

27 Paglin and Rufolo [1990] and Arcidiacono \textit{et al} [2007] present evidence from universities that students sort into courses on which they have a comparative advantage – which does not necessarily correlate to the size of the class.

28 The correlation between the number of available core or elective courses (L_i) and class size (N_{ct}) is less than .06 in both cases. Hence it is possible to separately identify the effects of choice from class size.
Among course level omitted variables, a key candidate is course difficulty. In this setting, unlike in primary and secondary school, students have greater choice over which courses they enrol onto. To the extent that difficult courses attract more students, we would find a spurious negative class size effect, all else equal.\footnote{In a prestigious university as the one in this study, students are selected from the right tail of the ability distribution and may therefore be keen to enrol onto the most challenging courses. Arcidiacono [2003] finds, using data from the NLS72, that students who perform better than expected on their major are more likely to stay on the same major or switch to a more difficult major. On the other hand if students are attracted to courses that are perceived to be easier, this leads to a positive class size effect so that we underestimate the true effect of class sizes on test scores.} We address this by including a measure of the difficulty of the course directly into the baseline specification (1) – the share of students that are re-sitting it because they failed the same course in the previous academic year. Column 1 of Table A2 shows that the previous estimate is robust to including this measure of course difficulty.

To capture the effect of course level omitted variables that are time invariant, we exploit time variation to identify the effect of class size within the same course over academic years. Our first such specification is analogous to the baseline specification (1) except that we control for course fixed effects, α_c, rather than student fixed effects, α_i. The result, in Column 2 of Table A2 shows there remains a negative and significant relationship between class sizes and test scores. Column 3 of Table A2 shows that similar conclusions can be drawn if the data is collapsed to the course-year level.\footnote{More precisely, Column 3 estimates the following panel data specification at the course-year level,}

\[\overline{y}_{ct} = \alpha_c + \gamma N_{ct} + \delta X_{ct} + \lambda H_{ct} + \sum_j \mu_j f_{jct} + u_{ct}, \]

where \overline{y}_{ct} is the average test score of all students on course c in academic year t, α_c is a course fixed effect, and all other controls are as previously defined, and the error term is clustered by department-academic year.

5 Heterogeneous Class Size Effects

The mechanisms that link class size to achievement can operate differently at different levels of class size, or may have heterogeneous effects across students. To shed light on why class size matters for achievement, we now exploit the full richness of the data to explore these two forms of heterogeneous class size effect that have not been previously documented within university education.
5.1 Non-Linear Effects

We first assess whether the class size effect is non-linear using the following panel data specification,

\[y_{ic} = \alpha_i + \sum_{q=2}^{5} \gamma_q D_{qc} + \delta X_c + \lambda H_c + \sum_j \mu_j f_{jc} + u_{ic}, \]

(3)

where \(D_{qc} \) is equal to one if the class size is in \(q \)th quintile of class size distribution, and zero otherwise. All other controls are as previously defined and we continue to cluster \(u_{ic} \) by course-academic year. An important feature of this empirical setting is that the same student is exposed to class sizes of very different size. As Figure 3B shows, the median student has a class size gap of 56, and more than 20% of students have a class size gap of at least 100, therefore spanning all five quintiles of the class size distribution. An implication is that it is feasible to include student fixed effects \(\alpha_i \) in (3) and estimate the \(\gamma_q \) coefficients using class size variation within the same student.\(^{31}\)

Table 4 presents the results. To begin with, Column 1 estimates (3) without controlling for the series of faculty dummies. The result shows there to be a non-linear effect of class size on student test scores. More precisely, there is a negative and significant class size effect moving from the first quintile, which corresponds to class sizes of 1 to 19, to the second quintile (20-33), so \(\hat{\gamma}_2 < 0 \), and then another negative and significant class size effect moving from the second to the third quintile (34-55), so \(\hat{\gamma}_3 < 0 \). Importantly, there is no additional class size effect moving from the third to the fourth quintile (56-103), so \(\hat{\gamma}_4 = \hat{\gamma}_3 \). Finally, there is an additional negative class size effect moving from the fourth to the fifth quintile (104-211), so \(\hat{\gamma}_5 < 0 \). At the foot of the table we report p-values on two-sided t-tests of \(\gamma_q = \gamma_{q+1} \). These confirm that the class size effects increase in absolute magnitude moving from the second to the third quintile, and from the fourth to the fifth quintile, yet there is no detrimental class size effect moving from the third to the fourth quintiles.\(^{32}\)

Moving from the first to the second quintile, \(\hat{\gamma}_2 \) implies an effect size of \(\frac{\hat{\gamma}_2}{sd(y_{ic})} \approx -0.107 \) where the standard deviation in test scores is within student. The implied effect size is around four times larger (.460) moving from quintile 1 to quintile 5 – using the midpoint values in each quintiles, this would correspond to increasing class size from 10 to 158. Normalizing this effect size by the overall standard deviation in test scores, this corresponds to an effect size of \(-.304 \), equivalent to moving a student from the median to the 25th percentile in cumulative distribution of test scores. This is sufficiently large to move an individual across classmarks, and so can have long run effects on individuals over their life cycle as it affects their labor market outcomes upon graduation, and their opportunities to continue into doctoral programs or to study for professional qualifications.

The implications for university policies for whether class sizes should be limited or capped are rather stark. In terms of student achievement, there are clear gains to be had from reducing class sizes in two cases. First, if class sizes are sufficiently small to begin with and can be reduced from

\(^{31}\) The quintile the class size is in is defined relative to the distribution of class sizes over the 1775 courses by academic year that are observed in the data.

\(^{32}\) This non-linear effect was also found using alternative methods including those that impose more parametric structure such as controlling for a cubic polynomial in class size, as well as using semi-parametric estimation techniques.
the second to the first quintile of class sizes which approximately translates to reducing class sizes from above the mid 30s to below 20. Second, if class sizes are very large to begin with and can be capped or reduced from the fifth to the fourth quintile. This approximately translates to not allowing class sizes to reach limits above 100. However, there appears to be little or no benefit – as measured by student test scores – of reducing class sizes over a wide range of intermediate class sizes, approximately corresponding to between the mid 30s to around 100.33

These basic conclusions are not much changed when unobserved heterogeneity across faculty members is controlled for, as reported in Column 2. The magnitude of the γ_q coefficients are very similar across Columns 1 and 2. The pattern of γ_q coefficients from Columns 1 and 2 are shown in Figure 4. The inclusion of a complete series of faculty dummies into (3) leaves unchanged the basic implication that class size effects are non-linear. Moreover, the results make clear that, in line with the results in Table 2, there is no systematic assignment of better or worse faculty to classes of different size, at any quintile of class size.

One concern is these non-linear effects may be picking up differential effects across core and elective courses – as shown in Table 1 core courses tend to be larger than electives by virtue of the fact that they are often compulsory for students to attend. To address this, Columns 3a and 3b estimate (3) for core and elective courses separately. The results show the negative class size effect in the smallest courses – moving from the first to the second quintile of class sizes – is significantly more pronounced in cores than in electives. The negative class size effect in the largest courses – moving from the fourth to the fifth quintile of class sizes – is also more pronounced in core courses. For both types of course, the evidence suggests there exists a wide range of intermediate class sizes over which small changes in class sizes would have little impact on student test scores. For core courses this range extends from the second to the fourth quintile, while for electives this range covers the third and fourth quintiles.34

In line with our earlier findings, the comparison of core and electives indicates that the negative effect of class size is more pronounced when students have less choice – namely, for core courses. This is again suggestive of the fact that students avoid larger classes when they can, in line with the hypothesis that they are aware of the negative effect of class size.

The finding that class size effects are non-linear also helps address concerns that our estimates capture other factors that vary with class size including – (i) unobserved inputs such as the availability of computers and library textbooks; (ii) the difficulty of the course; (iii) benevolence in grading. This is because each of these factors would a priori be expected to vary monotonically with class size, and

33This finding is in line with the results in Machado and Vera Hernandez [2008] on class size effects for first year undergraduates in a leading Spanish university. They observe class sizes in the 50-70 range, and find a zero effect size on test scores. Similarly, Kokkelenberg et al [2007] report non linear class size effects using data from undergraduates in a northeastern public university – they report large negative class size effects up to 40 and smaller negative effects thereafter. Finally, Duflo et al [2007] report results from a randomized experiment that reduced class sizes from 80 to 46 in Kenyan primary schools and found no effect on test scores.

34Again because faculty tend to teach core and elective courses there is insufficient variation to also identify the complete series of faculty dummies within only core or elective courses. To facilitate comparison with the earlier results, we maintain the same class sizes in each quintile for these specifications.
also to typically vary in the same way across core and elective courses.35,36

The result that there are two distinct ranges over which negative and significant class size effects exist suggests there are at least two mechanisms at play. The existence of a variety of possible mechanisms also makes it more likely that, on the margin, reducing class size may have differential effects across students depending on the students’ ability, as well as on the initial level of class size. To shed light on this, we now explore in more detail whether there are heterogeneous class size effects across students.

5.2 Quantile Regression Estimates

We use quantile regression to estimate whether the previously documented class size effects on test scores differ across students. More formally, we estimate the following specification to understand how the conditional distribution of the test score of student \(i\) on course \(c\) in year \(t\), \(y_{ic}\), is affected by class size \(N_c\) at each quantile \(\theta \in [0,1]\) of the distribution,37

\[
Quant_{\theta}(y_{ic}|.) = \gamma_\theta N_c + \delta_\theta X_c + \lambda_\theta H_c,
\]

where \(X_c\), and \(H_c\) are as previously defined in Section 4. We first estimate (4) using the full range of class sizes. Figure 5A plots the implied effect size from the \(\hat{\gamma}_\theta\) coefficients at each quantile \(\theta\), the associated 95% confidence interval, and the corresponding OLS estimate from (1) as a point of comparison. This shows – (i) the effect size is negative at each quantile \(\theta\); (ii) the effect size is larger in absolute value at higher quantiles. This suggests the conditional distribution of test scores becomes more compressed with increases in class size, and that this compression occurs because those students at right tail of the conditional distribution of test scores – whom we refer to as ‘high ability’ students – are more affected by increases in class size.38

To understand whether the distributional effects of class sizes vary with the size of the class, we use the following specification to estimate whether class size effects are heterogeneous across students

35In this university there is a specific funding algorithm in place so that the resources available to the library to cater for the students on any given course are proportional to the number of students enrolled on the course. In addition, the physical characteristics of lecture theatres are such that the capacity of lecture theatres varies continuously with the largest lecture theatres having a capacity of over 200.

36These results help address the concern that in smaller class sizes faculty may get to know students better and be more appreciative of the effort students exert throughout the academic year. This may then be reflected in higher exam marks in smaller courses leading to a spurious negative class size effect. Although we cannot rule this out altogether, the fact we find negative class size effects to exist in larger classes suggests this explanation alone does not explain the full pattern of class size effects found. Moreover, in the smallest class sizes we might expect this effect to operate equally in core and elective courses – contrary to the pattern of coefficients in Columns 3a and 3b. Finally, we reiterate that exam scripts are anonymous and typically are not marked solely by the faculty member teaching the course.

37This approach is particularly applicable in this context because the dependent variable, student’s test score, is measured without error.

38Arulampalam et al [2007] also use quantile regression on administrative data on second year undergraduate economics students at a UK university to explore the distributional consequences of absenteeism on test scores. They also find differential effects of absenteeism at the top end of the conditional distribution of test scores, with the most able students being most affected by absenteeism. In contrast, Duflo et al [2007] find high ability students in primary school to be unaffected by class size reductions.
moving from a class size in quintile q to one in quintile q',

$$Quant_\theta(y_{ic} |.) = \sum_{q=2}^{5} \gamma_{\theta q} D_{qc} + \delta_{\theta} X_c + \lambda_{\theta} H_c,$$

(5)

where D_{qc} is set equal to one if the class size is in qth quintile of class size distribution, and zero otherwise, and all other controls are as previously defined. To estimate (5) we then only use observations from class sizes in any two adjacent quintiles q and q'. Figure 5B then plots $\hat{\gamma}_{\theta q}$ at each quantile θ – the effect on the conditional distribution of test scores at each quantile θ of moving from quintile $q - 1$ to quintile q in the class size distribution, and the associated 95% confidence interval.

Three points are of note. First, moving from the first to the second quintile of class size, there is a uniformly negative effect on test scores at all quantiles. Changes in student or faculty behavior that induce these class size effects impact equally the test scores of high and low ability students. This would be consistent, for example, with either all students being less attentive, on the margin, as class sizes increase over this range, or the fact that faculty are less able to identify the needs of the median student say, having similarly detrimental effects on the learning of all students.

Second, there are no heterogeneous class size effects over a wide range of intermediate class sizes corresponding to the third and fourth quintiles of class size, in line with the results in Table 4.\footnote{For expositional ease we do not show the estimates of moving from quintile 2 to quintile 3. In line with the results in Table 4, these are slightly more negative than moving from quintile 1 to quintile 2 at each θ.}

Third, moving from the fourth to the fifth quintile of class size, there is a negative class size effect for most quantiles θ. However, the magnitude of the effect is significantly larger in higher quantiles – the effect on student test scores in the lowest quantiles is close to zero and precisely estimated, and the implied effect among the highest quantiles is slightly larger than -2. This suggests changes in student or faculty behavior that induce such class size effects appear to impact the test scores of high ability students to a greater extent, and highlights there is an important complementarity between student ability and class sizes that exists only in the largest class sizes.\footnote{One concern is that the results may merely reflect that more able students can afford to slack and still remain within the same overall classmark. For example the most able students may anticipate a test score well above 70 and so are more able to slack and remain confident of achieving a test score of at least 70 and therefore an A-grade on the course overall. This effect however should only depend on the student’s ability and not on the size of the class she is enrolled in. A similar concern would be that in larger courses, a greater number of graders are required to mark exam scripts. Hence it is more likely that such graders are unfamiliar with the course materials and therefore find it harder to identify the best and worse students. If this were the case then we would expect a compression of exam grades at both the left and right hand tails of the conditional test score distribution, and an effect on test scores moving from the third to fourth quintiles of class size. Neither of these implications is supported by the data.}

6 Mechanisms

6.1 Teachers’ Behavior

One possible mechanism linking class size to students achievement acts through changes in teachers’ behavior. For instance, teachers might devote less effort to larger classes because they are unable
to assess the students’ needs. The premise for our analysis is the earlier finding that, while their assignment is uncorrelated to class size, teachers do affect students’ performance. As noted above, the faculty dummies explain around 9% of the variation in student test scores. Moreover, 74% of the faculty dummies $\hat{\mu}_j$, estimated in Column 5, Table 2, are significantly different from zero.\footnote{This is in line with test scores not being curved because the identity of the teaching faculty matters. Moreover, the $\hat{\mu}_j$’s also do not significantly differ by faculty rank, in line with faculty not solely grading their own course. There are therefore few opportunities for faculty to strategically manipulate test scores to attract students to their course, which more junior faculty, or faculty that teach smaller courses, may otherwise feel pressure to do.}

A closer inspection of the estimated $\hat{\mu}_j$’s reveals enormous heterogeneity in the effect of different teaching faculty. The difference between the 10th and the 90th percentiles of $\hat{\mu}_j$ is 5.52, that is one third of the interdecile range of the unconditional distribution of test scores. Moreover, the standard deviation of the $\hat{\mu}_j$’s is 2.59. This suggests there can be large gains in student learning, as measured by test scores, moving one standard deviation in the distribution of ‘faculty quality’, $\hat{\mu}_j$. As in Rivkin et al’s [2005] study of the role of teacher quality in primary school settings, altering faculty inputs in university settings has quantitatively large effects. Whether, evaluated from the mean, this has greater effects on test scores than marginal adjustments in class sizes is unclear because both are presumably extremely costly adjustments to make.\footnote{In the literature on the effects of teacher quality on test scores in primary and secondary education settings, a number of studies find that a one standard deviation increase in teacher quality raises student scores by around .10 to .25 of a standard deviation [Aaranson et al 2007, Rockoff 2004, Rivkin et al 2005, Kane et al 2006], although these approaches have been criticized by Rothstein [2007]. In university settings, Hoffman and Oreopoulos [2006], using administrative data from a Canadian university, find a one standard deviation increase in teaching faculty quality leads to an increase in grades by .5 percentage points, which is qualitatively smaller than the impact in primary and secondary settings.}

To understand whether and how the same faculty member alters her behavior when exposed to larger class sizes we exploit the fact that in this empirical setting we observe within faculty variation in class sizes taught. Denoting the class size taught by professor j on course c as N_{jc}, we then estimate the following specification,

$$
\overline{y}_{jc} = \sum_j \mu_j f_{jc} + \sum_j \gamma_j [N_{jc} - \overline{N}_j] f_{jc} + \delta X_c + \lambda H_c + u_{jc}, \quad (6)
$$

where \overline{y}_{jc} is the average test score of students on faculty member j’s course c, and \overline{N}_j is the average class size taught by faculty member j over the sample period – academic years 1999/00-2003/04. f_{jc} is a dummy equal to one if faculty member j teacher course c and is zero otherwise, and X_c and H_c are as previously defined, and we allow the error term to be heteroskedastic.

The coefficient of interest γ_j measures how the average test scores of students of faculty member j are affected by that faculty member teaching a class that is larger than they experience on average. The null hypothesis is that $\gamma_j = 0$ so faculty do not alter their behavior in classes of different size. This may be due to most of the costs to faculty of teaching being fixed, so that how faculty prepare and present lectures is independent of the numbers of students. On the other hand, γ_j may be positive if faculty devote more effort to class preparation when more students stand to benefit, for
example. Finally, γ_j may be negative if in larger than average classes, faculty are unable to tailor their teaching to appeal to the median student, they receive less feedback from students on how they can improve the course to meet the needs of students, or it is simply harder for them to monitor whether students are paying attention in the lecture.

Estimating (6) reveals heterogeneous responses to class sizes by faculty that are consistent with all three mechanisms. However, we note that for 76% of faculty, $\hat{\gamma}_j$ is not significantly different from zero – hence the data support the idea that fixed costs of preparation dominate other possible effects, so that faculty behavior is unaffected by the number of students on the course. Hence any class size effects do not predominantly appear to originate from changes in faculty behavior across classes of different size.\footnote{The remaining 24\% of faculty have $\hat{\gamma}_j \neq 0$ with almost equal numbers having $\hat{\gamma}_j > 0$ and $\hat{\gamma}_j < 0$. Although equal numbers of faculty have positive and negative interaction effects, the distribution is right skewed. This suggests among faculty whose behavior significantly changes with class size, there is a slightly more pronounced effect for student achievement to fall in larger than average class sizes.}

6.2 Students’ Behavior

As a final step, we exploit the observed heterogeneity in students’ characteristics to test the relevance of two mechanisms through which class size affects test scores. First we test whether class size reduces test scores because it exacerbates informational constraints. Second we test whether class sizes reduces test scores because it reduces the provision of other complementary inputs, such as access to books or computer equipment. In each case we estimate the following panel data specification,

$$y_{ic} = \alpha_i + \sum_q \gamma_q^0 D_{qc}(1 - Z_i) + \sum_q \gamma_q^1 N_{qc}(Z_i) + \delta X_c + \lambda H_c + \sum_j \mu_j f_{jc} + u_{ic},$$

(7)

where Z_i is a dummy variable defined below, and all other variables are as previously defined. We continue to cluster the error term by course-academic year. The parameters of interest are γ_q^0 and γ_q^1 at each quintile q – a comparison of these coefficients is then informative of whether the class size effects are more pronounced for some students rather than others.

We use two proxies of the severity of informational constraints students face – (i) $Z_i = 1$ for British students and zero otherwise; (ii) $Z_i = 1$ for students who obtained their undergraduate degree from this same institution and zero otherwise. The rationale is that students who have already experienced the UK university system are more familiar with the examination style, the extent to which students are expected to work on their own, and norms regarding how approachable faculty are during their office hours for example. In addition, students who are familiar with this institution are more likely to have personal contact with former M.Sc. students and therefore be more informed about the choice of courses on different degree programs, the difficulty of courses, and the quality of faculty.\footnote{Students that were undergraduates at the same institution and British students form two distinct groups, each of which accounts for 17% of the sample. This is because there are 153 nationalities represented in the sample. Indeed, there are only 265 sample students that are both British and former undergraduates, 1627 British students that were not former undergraduates, and 1601 former undergraduates that are not British. On average, former undergraduates...}
The results are presented in Columns 1 and 2 of Table 5. All students— as defined along both dimensions— experience similar non-linear class size effects. As reported at the foot of Table 5, is never significantly different from at any quintile and nor for any individual characteristic . We thus find no evidence that class size affects achievement through informational constraints.

To assess whether larger classes offer fewer complementary inputs and this reduces test scores, we identify the students who are more likely to be able to replace these complementary inputs. Intuitively, wealthier students may be able to purchase inputs, such as textbooks or personal tutors, that offset some forms of negative class size effect. The administrative records contain the zip code of residence for each student. We use this information for the subset of students that reside in private residences to form a proxy for their family income based on the value of house price sales in their zip code. 68% of sample students reside in private residences as opposed to university residences. We use the average price of sold flats/maisonettes in the three digit zip code as these are correlated to rental rates for students’ accommodation. We then define a wealthy student () to be one that resides in a zip code with higher than median values of house price sales in the academic year in which attends the university, and otherwise.

The findings in Column 3 show that the pattern and magnitude of the class size effect is identical for the two groups of student. This helps rule out the documented class size effects could be offset by students’ ability to purchase replacement inputs in the marketplace. This leaves open the possibility that the class size effects stem from some non-market mechanism, such as changes in behavior of students or the provision of feedback to students from faculty in class sizes of different size.

While more research is clearly required to pin down this mechanism in university settings, we note that in a companion paper using the same administrative data on this same set of students [Bandiera et al 2008], we find robust evidence that— (i) the provision of feedback to students about their past academic performance has positive and significant effects on their future academic performance, as measured by test scores; (ii) the effect of feedback on test scores is indeed significantly larger on more able students, consistent with the quantile regression estimates in Section 5.2.

at the university do not take courses with significantly smaller class sizes than other students despite being more likely to be aware of class sizes. Nor do they have significantly different test scores.

House price information is available at the three digit zip code level— zip codes in the UK typically have six digits in total. The first three digits correspond to areas that are far smaller than US counties. There are 282 unique three digit zip codes among the sample students. House price information was obtained from the Land Registry at http://www.landregistry.gov.uk/.

The most important form of student’s change in behavior is obviously the effort and time devoted to studying, something on which we have no information. On this point, Stinebrickner and Stinebrickner [2008] estimate that an increase in studying of one hour per day causes first semester GPAs to rise by 0.36, which is more than half of the GPA standard deviation. In our analysis we cannot establish whether, or under which circumstances, study effort and class size are complements or substitutes. However, any change in students’ behavior which is induced purely by class size should be considered a class size effect.
7 Discussion

It is widely perceived among the general public and university administrators that class sizes are an important input into the educational production function. We contribute to this debate by providing some of the first estimates of the impact of class size on students’ academic achievement, as measured by their end of year exam test scores. Against a backdrop of steadily increasing enrolment rates into universities in the UK – as in much of the OECD – our analysis has the following policy implications.

First, there is robust evidence of a negative class size effect – on average, larger classes reduce students academic achievement as measured by test scores. However the magnitude of this effect is generally smaller than has been documented to be the case at other tiers of the education system. Given the considerable variation in observed class sizes, we also document that there exists a wide range of class sizes over which, on the margin, targeting resources to reduce class sizes will have little impact on test scores. However, reducing the very largest class sizes – namely those over 100 – will not only significantly raise test scores, it will do so to a greater extent for the most able students.

In terms of the importance of reducing class sizes versus other inputs, two important factors need to be borne in mind. As in Rivkin et al [2005]’s analysis of primary schools, we find that altering faculty inputs has quantitatively large effects on test scores. However without further information on the cost of such input adjustments, it is impossible to say whether targeting resources to either hire better faculty or to reduce class sizes – in the relevant range of class sizes – is the most cost effective means for universities to raise academic achievement. This is certainly worthy of future research given the continued rise in tuition fees in UK universities, at least among the most popular universities, that has increased the resources available to higher education institutions.47

What is clear is that further research is also required to better understand the underlying mechanisms for why class size effects exist in this university setting in the smallest and largest class sizes. The evidence we present helps rule out that such effects are due solely to the non-random assignment of faculty to class size, sorting by students onto courses on the basis of class size, omitted inputs, the difficulty of courses, or grading policies. The evidence also shows that these class size effects are not mitigated for students with greater knowledge of the UK university system, this university in particular, or with greater family wealth.

Given the non-linear nature of these effects, at least two mechanisms appear to be at play. In the smallest class sizes it may be that the ability of faculty to identify the needs of the median student quickly diminishes with incremental changes in class size. However, once the class is sufficiently large this mechanism is no longer relevant. On the other hand, the negative class size effects we document among the largest courses, may relate to the ability of students to obtain feedback from faculty members on what they are doing correctly and incorrectly on the course. In line with the evidence from a companion paper [Bandiera et al 2008], the provision of feedback appears to have the largest effect on the most able students.

47 Other analyses of specific supply side policies related to higher education include the effects of tuition fees [Fortin 2006] and scholarships and mentoring services [Angrist et al 2007].
Given the supportive evidence in the Appendix that universities are unable to adjust along all input margins, we can expect future increases in enrolment to continue impacting on university class sizes. To the extent that the demand for higher education is countercyclical, the need to understand the consequences of larger class sizes may be especially urgent with the downturn in the global economy. To this end, there may be important complementarities to explore in future research between the microeconomic literature this paper contributes to on the organization of universities, and the hitherto separate macroeconomic literature on the effects of adverse economic conditions at the time of labor market entry over the life cycle [Gibbons and Waldman 2004, Oyer 2008].

8 Appendix: Input Adjustment

We present evidence that departments cannot adjust on all margins in response to aggregate changes in student enrolment. This opens up the possibility that changes in enrolment partially feed through into undesired changes in class size which may in turn affect student achievement as measured by end of year test scores. We focus first on inputs in the form of numbers of teaching faculty. We also distinguish between two types of student that can enrol onto courses offered by a given department d – either students can be registered on a degree program offered by department d itself, or students can be enrolled in related programs in other departments d' and their degree program regulations allow them to take courses in department d. We therefore estimate the following specification for inputs into department d in academic year t (y_{dt}),

$$y_{dt} = \alpha_d + \beta_0 E_{dt} + \beta_1 R_{dt} + u_{dt},$$

where y_{dt} refers to the number of teaching faculty, E_{dt} is the number of students enrolled in department d, and R_{dt} is the number of students enrolled in related departments. Note that R_{dt} is dt specific so that each department has a series of bilateral agreements with a subset of other departments over whether students registered on programs offered by department d' are permitted to take courses organized and run by department d, and these agreements can change over time. By controlling for department fixed effects α_d we only exploit variation in year to year student enrolments and therefore shed light on whether and how student enrolments correlate to departmental inputs such as numbers of teaching faculty. We allow the error term u_{dt} to follow an AR(1) process where the autocorrelation coefficient is restricted to be the same across departments.

Table A1 presents the results. Column 1 shows that as the number of students enrolled in the department increases, the number of teaching faculty also significantly increases ($\hat{\beta}_0 > 0$). The magnitude of the coefficient implies if the number of students enrolled in department d were to increase by 17.7, this would be associated with there being one more faculty member teaching, as reported at the foot of Column 1. In contrast, there is no correlation between the number of teaching faculty and the number of students enrolled in related departments and so who could potentially attend courses offered by department d – we find $\hat{\beta}_1 \approx 0$ and $\hat{\beta}_0$ is significantly different to $\hat{\beta}_1$. 24
Columns 2 to 4 break this result down by faculty rank. We see that as more students enrol in department d the number of full and other professors that teach, significantly increases. As expected, the increase in enrolment of students registered with department d associated with one more full professor teaching (37.9) is larger than the increase in enrolment associated with either an associate or assistant professor teaching (26.4). In contrast, we again see that the number of teaching faculty is uncorrelated with students that enrol in related departments and so can potentially attend courses offered by department d. Finally, Column 4 shows that enrolment for neither source – in department d or related departments d' – affects the number of non-professors that teach.48

Taken together these results show that although departmental inputs in terms of teaching faculty do partially adjust to student enrolments, they do so only in response to students that enrol into department d itself, and are unrelated to those students that can enrol onto programs in department d' are are eligible to enrol onto courses offered by department d. In other words the resources departments have to finance teaching faculty appear to be related to the number of students enrolled in the department (E_{d}), not directly related to the number of students actually taught.

However, both sources of student – namely those enrolled into department d and those enrolled in related departments – influence class sizes in courses offered by department d. More formally, Column 5a shows that student enrolments in the own and related departments are both significantly associated with larger class sizes in courses organized by department d. The coefficients imply that if 8.95 more students enrol in department d then class size will increase by one on the average course offered by department d, and class sizes will on average increase by one if 40 more students enrol in related departments. Column 5b shows these effects remain controlling for the number of courses and programmes offered by department d. Hence even if departments respond to increased enrolment by adjusting along these margins, these adjustments do not appear to be sufficient to prevent class sizes from increasing overall.49

These results show that departments can adjust inputs to a greater extent in response to changes in their own student enrolment, than in response to changes in enrolment in related departments ($|\beta_0| \geq |\beta_1|$). However, class sizes are positively correlated with both sources of student enrolment. Taken together this implies that student enrolments in department d' impose a negative externality onto class sizes in related department d. This negative externality stems from the fact that – (i) departments cannot deny students from related departments enrolling onto their courses; (ii) the resources departments command for organizing and running their courses relate to the number of students enrolled in the department, not the numbers of students actually taught.50

48These figures are in line with anecdotal evidence given to us by heads of department suggesting that if around 25 more students enrol onto programs in the department, the department is often able to negotiate additional resources from the university to hire one more faculty member to teach.

49Note that on average a department offers 16 courses, of which students take around 4 or 5. Hence we expect β_0 to be far smaller than one in the class size regressions in Columns 5a and 5b. Second, although students in related departments can potentially take courses offered by the department, many of them will choose not to do so. Hence we also expect β_1 to be far smaller than β_0 in absolute value.

50These results beg the question why departments are allowed to impose this negative externality onto each other? Although this lies outside the scope of this paper, we speculate it may relate to there being potentially a very large
number of bilateral agreements that would need to be considered for these externalities to be internalized – in this university there are 24 departments and so potentially up to $(\frac{1}{2}(24 \times 23))$ bilateral agreements across departments. Moreover, the flows of students from department d to d' need not be symmetric to flows from d' to d. In addition, it is far more straightforward from an accounting perspective to reward department on the basis of students enrolled on programs offered by the department, rather than based on the number of students actually taught.

26

Table 1: Descriptive Statistics on Test Scores and Class Sizes
Mean, between standard deviation in parentheses, within standard deviation in brackets

<table>
<thead>
<tr>
<th>Courses</th>
<th>Test Scores</th>
<th></th>
<th></th>
<th>Class Sizes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All</td>
<td>Core</td>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>62.0</td>
<td>62.0</td>
<td>62.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Deviation Between Students</td>
<td>(5.00)</td>
<td>(5.81)</td>
<td>(5.33)</td>
<td>(33.2)</td>
<td>(47.5)</td>
<td>(26.9)</td>
</tr>
<tr>
<td>Standard Deviation Within Student</td>
<td>[4.37]</td>
<td>[3.89]</td>
<td>[3.43]</td>
<td>[32.3]</td>
<td>[23.4]</td>
<td>[19.5]</td>
</tr>
</tbody>
</table>

Notes: The decomposition of each statistic into the within and between variation takes account of the fact that the panel is unbalanced in each case. There are 40851 student-course level observations in total, covering 10873 students, and an average of 3.76 courses per student. Of these, 18923 (21928) observations are for core (elective) student-courses. The between and within standard deviations account for the panel being unbalanced.
Table 2: Class Size Effects

Dependent Variable: Test Score

Standard errors are clustered by course-year

<table>
<thead>
<tr>
<th></th>
<th>(1) Unconditional</th>
<th>(2) Controls</th>
<th>(3) Within Student</th>
<th>(4) Class Composition</th>
<th>(5) Faculty Dummies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class size</td>
<td>-.011***</td>
<td>-.011***</td>
<td>-.012***</td>
<td>-.013***</td>
<td>-.015***</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.003)</td>
</tr>
<tr>
<td>Implied Effect Size</td>
<td>-.074***</td>
<td>-.073***</td>
<td>-.082***</td>
<td>-.093***</td>
<td>-.108***</td>
</tr>
<tr>
<td></td>
<td>(.016)</td>
<td>(.014)</td>
<td>(.014)</td>
<td>(.014)</td>
<td>(.020)</td>
</tr>
<tr>
<td></td>
<td>[-.106, -.042]</td>
<td>[-.100, -.046]</td>
<td>[-.107, -.056]</td>
<td>[-.120, -.066]</td>
<td>[-.148, -.069]</td>
</tr>
<tr>
<td>Student fixed effect</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Faculty dummies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>.006</td>
<td>.016</td>
<td>.574</td>
<td>.575</td>
<td>.618</td>
</tr>
<tr>
<td>Observations (clusters)</td>
<td>40851 (1775)</td>
<td>40851 (1775)</td>
<td>40851 (1775)</td>
<td>40851 (1775)</td>
<td>40851 (1775)</td>
</tr>
</tbody>
</table>

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Observations are at the student-course-year level. Standard errors are clustered by course-year throughout. The dependent variable is the student's test score. In Columns 2 onwards we control for the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, whether the course is a core or elective course for the student, and the share of the overall mark that is attributed to the final exam. In Column 4 we additionally control for the following course-year characteristics—the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. In Column 5 we control for a complete series of faculty dummies, such that each faculty dummy is equal to one if faculty member j teaches on the course-year, and zero otherwise. The implied effect size is the effect of a one standard deviation increase in class size from its mean, on the test score, normalized by the standard deviation of test scores. The foot of each column reports the implied effect size, its standard error, and the associated 95% confidence interval. In Columns 1 and 2 these standard deviations are calculated over all students and classes, and in the remaining columns the standard deviations refer to the within student values.
Table 3: Evaluations and Course Choice

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Evaluations</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Postgraduate Course Satisfaction</td>
<td>(2) Undergraduate Course Satisfaction</td>
</tr>
<tr>
<td>Class size</td>
<td>-.002*** (.001)</td>
<td>.002 (.001)</td>
</tr>
<tr>
<td>Class size x number of available core courses on program</td>
<td>.004*** (.001)</td>
<td></td>
</tr>
<tr>
<td>Class size x number of available elective courses on program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implied Effect Size at Mean</td>
<td>-.090*** (.021)</td>
<td>-.071*** (.013)</td>
</tr>
<tr>
<td>Implied Effect Size at 10th Percentile</td>
<td>-.124*** (.022)</td>
<td>-.086*** (.020)</td>
</tr>
<tr>
<td>Implied Effect Size at 90th Percentile</td>
<td>-.053* (.027)</td>
<td>-.054*** (.018)</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Department</td>
<td>Department</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Observations (clusters)</td>
<td>104</td>
<td>90</td>
</tr>
</tbody>
</table>

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In Columns 1 and 2 the dependent variable is the average student evaluation at the department-year level among postgraduate (undergraduate) students. This can range from 1 (least satisfied) to 4 (most satisfied). Observations are weighted by the number of student evaluation responses Panel corrected standard errors are calculated using a Prais-Winsten regression. This allows the error terms to be department specific heteroskedastic, and contemporaneously correlated across departments. A common AR(1) process is assumed for all departments. All observations are at the department-year level. Observations for 2 of the 23 departments in which students can be enrolled are dropped either because that department only offers its own courses in the last year of data, or because the department always offers all courses jointly with other departments. Hence the sample is based on a balanced panel of 21 departments over five academic years (1999/2000-2003/4). The number of students enrolled in related departments is defined to be those students that are eligible to take any given course in the department for credit as part of their graduate degree program. We first calculate this enrolment for each module within the department, and then take its average over all courses within the department for each academic year. Class sizes are averages within the department-year. Hence in these columns we weight observations by the number of courses in the department that academic year. Weighted means of class size are then reported at the foot of the table. In Columns 3 and 4 the dependent variable is the student’s test score on the course, observations are at the student-course year level, and standard errors are clustered by course-year. We control for the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, the share of the overall mark that is attributed to the final exam, and the following course-year characteristics—the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. The samples in Columns 3 (4) is restricted to those programs that have at least one required core (elective) course. The foot of each column reports the implied effect size, its standard error, and the associated 95% confidence interval. These standard deviations refer to the within student values. The effect size is also calculated at the 10th and 90th percentile of the number of available core (elective) courses on the programme that the student is enrolled in.
Table 4: Non Linear Class Size Effects
Dependent Variable - Columns 1-4: Test Score, Column 5: Dummy =1 if distinction, 0 otherwise
Standard errors are clustered by course-year

<table>
<thead>
<tr>
<th>Class size: quintile 2 [20-33]</th>
<th>(1) Quintile</th>
<th>(2) Faculty Heterogeneity</th>
<th>(3a) Core</th>
<th>(3b) Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.561***</td>
<td>-.494***</td>
<td>-1.16***</td>
<td>-.339**</td>
</tr>
<tr>
<td></td>
<td>(.128)</td>
<td>(.140)</td>
<td>(.336)</td>
<td>(.138)</td>
</tr>
<tr>
<td>Class size: quintile 3 [34-55]</td>
<td>-.971***</td>
<td>-.949***</td>
<td>-1.33***</td>
<td>-.823***</td>
</tr>
<tr>
<td></td>
<td>(.147)</td>
<td>(.181)</td>
<td>(.368)</td>
<td>(.159)</td>
</tr>
<tr>
<td>Class size: quintile 4 [56-103]</td>
<td>-1.02***</td>
<td>-1.08***</td>
<td>-.968**</td>
<td>-.741***</td>
</tr>
<tr>
<td></td>
<td>(.188)</td>
<td>(.231)</td>
<td>(.461)</td>
<td>(.190)</td>
</tr>
<tr>
<td>Class size: quintile 5 [104-211]</td>
<td>-1.92***</td>
<td>-1.97***</td>
<td>-2.30***</td>
<td>-1.54***</td>
</tr>
<tr>
<td></td>
<td>(.271)</td>
<td>(.338)</td>
<td>(.534)</td>
<td>(.331)</td>
</tr>
</tbody>
</table>

Student fixed effect
Yes
Yes
Yes
Yes

Faculty dummies
No
Yes
No
No

Test: Quintile 2 = Quintile 3 (p-value)
[.001]
[.004]
[.586]
[.001]

Test: Quintile 3 = Quintile 4 (p-value)
[.804]
[.513]
[.403]
[.669]

Test: Quintile 4 = Quintile 5 (p-value)
[.001]
[.003]
[.003]
[.016]

Adjusted R-squared
.575
.618
.697
.713

Observations (clusters)
40851 (1775)
40851 (1775)
18923 (710)
21913 (1557)

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. All observations are at the student-course year level. Standard errors are clustered by course-year. The dependent variable is the student's test score. In all columns we control for the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, whether the course is a core or elective course for the student, and the share of the overall mark that is attributed to the final exam. In all Columns we control for the following course-year characteristics—the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. In Column 2 we additionally control for a complete series of faculty dummies, such that each faculty dummy is equal to one if faculty member j teaches on the course-year, and zero otherwise. Column 3a (3b) restricts the sample to core (elective) courses only.
<table>
<thead>
<tr>
<th>Group 0 = Non British</th>
<th>Group 1 = British</th>
<th>Group 1 = Undergraduate Institution</th>
<th>Group 1 = House Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class size: quintile 2 [20-33]</td>
<td>Group 0 = 0</td>
<td>-0.554***</td>
<td>-0.479***</td>
</tr>
<tr>
<td></td>
<td>Group 1 = 1</td>
<td>-0.236</td>
<td>-0.568***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.147)</td>
<td>(.146)</td>
</tr>
<tr>
<td>Class size: quintile 3 [34-55]</td>
<td>Group 0 = 0</td>
<td>-0.954***</td>
<td>-0.911***</td>
</tr>
<tr>
<td></td>
<td>Group 1 = 1</td>
<td>-0.974***</td>
<td>-1.16***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.185)</td>
<td>(.185)</td>
</tr>
<tr>
<td>Class size: quintile 4 [56-103]</td>
<td>Group 0 = 0</td>
<td>-1.12***</td>
<td>-1.04***</td>
</tr>
<tr>
<td></td>
<td>Group 1 = 1</td>
<td>-0.891***</td>
<td>-1.29***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.238)</td>
<td>(.233)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.382)</td>
<td>(.315)</td>
</tr>
<tr>
<td>Class size: quintile 5 [104-211]</td>
<td>Group 0 = 0</td>
<td>-1.92***</td>
<td>-1.95***</td>
</tr>
<tr>
<td></td>
<td>Group 1 = 1</td>
<td>-2.36***</td>
<td>-2.12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.432)</td>
<td>(.414)</td>
</tr>
</tbody>
</table>

P-value: Equal class size effects: quintile 2 | [0.130] | [0.657] | [0.520] |
P-value: Equal class size effects: quintile 3 | [0.926] | [0.248] | [0.465] |
P-value: Equal class size effects: quintile 4 | [0.336] | [0.297] | [0.416] |
P-value: Equal class size effects: quintile 5 | [0.137] | [0.526] | [0.269] |
Student fixed effect and faculty dummies Yes Yes Yes
Adjusted R-squared 0.618 0.618 0.628
Observations (clusters) 40851 (1775) 40851 (1775) 27238 (1735)

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Observations are at the student-course-year level. Standard errors are clustered by course-year throughout. Throughout we control for the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, and the share of the overall mark that is attributed to the final exam, and a complete series of faculty dummies, such that each faculty dummy is equal to one if faculty member j teaches on the course-year, and zero otherwise. In all columns we also control for the following course-year characteristics—the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. The sample in Column 3 is restricted to students who do not reside in university accommodation. We classify a student as living in a three digit postcode sector with above median house prices if the average sale price of flats/marionettes in the postcode in the year of study is above the median sale price among all three digit postcodes that year. The implied effect size is the effect of a one standard deviation increase in class size from its mean, on the test score, normalized by the standard deviation of test scores. The foot of each column reports the p-value on the null hypothesis that the coefficient on each quintile of class size is the same in groups 0 and 1.
Table A1: Departmental Inputs and Student Enrolment

Prais-Winsten Regression Estimates

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Numbers of Teaching Faculty</th>
<th>Class Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) All Faculty</td>
<td>(2) Full Professors</td>
</tr>
<tr>
<td>Number of students enrolled in department</td>
<td>.057** (.029)</td>
<td>.026** (.010)</td>
</tr>
<tr>
<td>Number of students enrolled in related departments</td>
<td>-.006 (.012)</td>
<td>-.000 (.005)</td>
</tr>
<tr>
<td>Number of courses offered by department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of programs offered by department</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean of dependent variable	13.4	4.27	7.56	1.43	26.4	26.4
Test: equal enrolment effects (p-value)	[.024]	[.030]	[.050]	[.410]	[.000]	[.000]
Number of own department enrollees required to increase outcome by one unit	17.7	37.9	26.4	-145	8.95	9.09
Number of related department enrollees required to increase outcome by one unit	-	-	-	-	40.0	37.8
Department fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations (department-year)	105	105	105	105	105	105

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. Panel corrected standard errors are calculated using a Prais-Winsten regression. This allows the error terms to be department specific heteroskedastic, and contemporaneously correlated across departments. A common AR(1) process is assumed for all departments. All observations are at the department-year level. Observations for 2 of the 23 departments in which students can be enrolled are dropped either because that department only offers its own courses in the last year of data, or because the department always offers all courses jointly with other departments. Hence the sample is based on a balanced panel of 21 departments over five academic years (1999/00-2003/4). The number of students enrolled in related departments is defined to be those students that are eligible to take any given course in the department for credit as part of their graduate degree program. We first calculate this enrolment for each module within the department, and then take its average over all courses within the department for each academic year. All faculty numbers refer to faculty that teach on at least one course during the academic year. In Column 4 non professors refers to teaching faculty that do not have a doctorate degree. In Columns 5a and 5b, class sizes are averages within the department-year. Hence in these columns we weight observations by the number of courses in the department that academic year. Weighted means of class size are then reported at the foot of the table. At the foot of the table we also report the p-value of a t-test of equality of the coefficients on own department and outside department enrolments. We also report the implied inverse of the coefficients on own department and outside department enrolments to calculate the change in these variables that are associated with a one unit increase in each dependent variable.
Table A2: Robustness Checks

Dependent Variable: Test Score

Standard errors are clustered by course-year in Columns 1-2, and by department-year in Column 3

<table>
<thead>
<tr>
<th>Course Omitted Variables</th>
<th>(1) Course Difficulty</th>
<th>(2) Course Fixed Effects</th>
<th>(3) Time Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class size</td>
<td>-.015*** (.003)</td>
<td>-.006* (.004)</td>
<td>-.014** (.007)</td>
</tr>
<tr>
<td>Share of students that are re-sitting the course</td>
<td>.747 (2.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implied Effect Size</td>
<td>-.108*** (.020)</td>
<td>-.042* (.025)</td>
<td>-.045** (.023)</td>
</tr>
<tr>
<td>Fixed Effect</td>
<td>Student, Faculty</td>
<td>Course</td>
<td>Course</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>.618</td>
<td>.089</td>
<td>.630</td>
</tr>
<tr>
<td>Observations (clusters)</td>
<td>40851 (1775)</td>
<td>40851 (1775)</td>
<td>1775 (116)</td>
</tr>
</tbody>
</table>

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In all columns except Column 3, the dependent variable is the student's test score on the course, observations are at the student-course year level, and standard errors are clustered by course-year. In Column 3 the dependent variable is the average test score across students on the course, observations are at the course-year level, and standard errors are clustered by department-year. We control for the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, the share of the overall mark that is attributed to the final exam, and the following course-year characteristics----the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. In Column 1 we additionally control for a complete series of faculty dummies, such that each faculty dummy is equal to one if faculty member j teaches on the course-year, and zero otherwise. In Columns 2 and 3 we control for a complete series of course fixed effects rather than student fixed effects. The foot of each column reports the implied effect size, its standard error, and the associated 95% confidence interval.
Figure 1A: Aggregate UK Enrolment in Higher Education

![Graph showing aggregate UK enrolment in higher education from 1995 to 2005, with data points for UK Total, UK Undergraduates, and UK Postgraduates.](image)

Figure 1B: Aggregate Numbers of Faculty in Higher Education

![Graph showing aggregate numbers of faculty in higher education from 1995 to 2005, with data points for Postgraduate students, Total students, and Total faculty.](image)

Notes: Figure 1A shows total full time equivalent student enrolments, in the UK, and split for the UK by undergraduate and postgraduate students. Postgraduate students correspond to those in their fourth or higher year of tertiary education. Figure 1B shows total full time equivalent faculty numbers in higher education in the UK, and the total full time equivalent student enrolment, and that for postgraduate students. Postgraduate students correspond to those in their fourth or higher year of tertiary education. Each time series is normalized to be equal to 100 in 1995. The data source for these figures is the Higher Education Statistics Agency (http://www.hesa.ac.uk/), accessed on 15 November 2007.
Figure 2: Distribution of Classmarks, by Course-Year

Figure 3A: Within Student Variation in Test Score

Notes: In Figure 2, each vertical line represents one course-year. The figure shows for each course-year, the proportions of students that obtain each classmark. These classifications correspond to final exam marks greater than or equal to 70 for an A-grade, between 60 and 69 for a B-grade, between 50 and 59 for a C-grade, and below 50 for a D-grade (fail). To ease exposition, the course-years are sorted into ascending order of the share of B-grades awarded. In Figure 3A, the within student test score gap is defined to be the difference in the student’s maximum and minimum test scores across courses.
Figure 3B: Within Student Variation in Class Size

Figure 4: Non-Linear Class Size Effects

Notes: In Figure 3B, the within student class size gap is analogously defined. The right hand axis on each figure shows the probability that a given student has a test score (class size) gap less than or equal to the value on the horizontal axis. On each figure, we indicate the test score and class size gaps for the median student in the sample. Figure 4 plots the coefficients from a panel data spline regression of test scores on a series of dummies for whether the class size is in any given quantile of the class size distribution, and the same controls as described in the Tables. The two sets of estimates correspond to the specifications with and without faculty dummies. The omitted category is class size in the first quintile, corresponding to class sizes of 1 to 19. The second quintile corresponds to class sizes from 20 to 33, the third from 34 to 55, the fourth from 56 to 103, and the fifth to 104 to 211.
Figure 5A: Quantile Regression Estimates of the Effect Size

Figure 5B: Quantile Regression Estimates of Moving from One Quintile to the Next in the Class Size Distribution

Notes: Figure 5A graphs the estimated effect size on the test score at each quantile of the conditional distribution of student test scores, and the associated 95% confidence interval. Figure 5B graphs the estimated effect of moving from quintile q to quintile q’ in the distribution of class sizes on the test score at each quantile of the conditional distribution of student test scores, and the associated 95% confidence interval. In each case, the distribution of test scores is conditioned on the number of faculty that teach on the course, the share of them that are full professors, the total number of credits obtained for completing the course, and the share of the overall mark that is attributed to the final exam, and the following course-year characteristics—the share of women, the mean age of students, the standard deviation in age of students, and the ethnic fragmentation among students, where the ethnicity of each student is classified as white, black, Asian, Chinese, and other, the fragmentation of students by department, the share of students who completed their undergraduate studies at the same institution, and the share of British students. For expositional ease we do not show the estimates of moving from quintile 2 to quintile 3. In line with the results in Table 4, these are slightly more negative than moving from quintile 1 to quintile 2 at each quantile.