A Simple Theory of Predation*

Chiara Fumagalli† Massimo Motta‡

March 21, 2013

Abstract

We propose a simple theory of predatory pricing, based on incumbency advantages, scale economies and sequential buyers (or markets). The prey needs a critical scale to be successful. The incumbent (or predator) has an initial advantage and is ready to make losses on earlier buyers so as to deprive the prey of the scale it needs, thus making monopoly profits on later buyers. Several extensions are considered, including cases where scale economies exist because of demand externalities or two-sided market effects, and where markets are characterized by common costs. Conditions under which predation may (or not) take place in actual cases are also discussed.

*We are very grateful to the Editor, Dennis Carlton, and to an anonymous referee for comments that helped us substantially improve the paper. We thank Claudio Calcagno for research assistance and for comments. We also thank Cedric Argenton, Luis Cabral, Giacomo Calzolari, Joe Harrington, Paul Klemperer, Volker Nocke, Marco Pagnozzi, Patrick Rey, Mike Riordan, Yossi Spiegel, John Sutton, Ralph Winter and seminar participants at EEA 2011 (Oslo), MaCCI Summer Institute in Competition Policy (Speyer), IOIC 2011 (Boston), EARIE 2010 (Istanbul), IAE (Barcelona), IESE (Barcelona), University of Vienna, Oxford University, Mannheim University, Tilburg University, CEMFI (Madrid), ACE 2009 (Berlin), Università di Bologna, Università di Padova, European University Institute (Florence), Universitat Pompeu Fabra for valuable suggestions.

†Università Bocconi (Department of Economics), IGIER and CEPR. E-mail: chiara.fumagalli@unibocconi.it
‡ICREA-Universitat Pompeu Fabra and BarcelonaGSE. E-mail: massimo.motta@upf.edu.
1 Introduction

Predation is a controversial topic from the perspective of economic theory. For a long time economists were unable to provide a solid rationale for predation. Indeed, it is only since the ’80s that modern IO theory has been able to find some rigorous explanations of why an incumbent firm may have an incentive to prey upon more efficient rivals. These theories, consisting of reputation, signaling, and financial predation models, are mostly based on information asymmetries. For instance, these models assume that the prey is an entrant firm who does not know the cost of the incumbent, or that external financiers do not observe the behavior of the prey once it has obtained outside funds.

In this paper, we present a simple theory of predation which does not depend on information asymmetries, and which is based instead on the co-existence of scale economies and sequential buyers (or markets). Intuitively, our mechanism works as follows. In an industry where there exist scale economies (which can be either on the supply side or the demand side), the incumbent engages in below-cost pricing to some early buyers (or markets) to deprive the rival of the scale it needs to operate successfully. Once deprived the rival of key buyers (or markets), the incumbent will be able to raise prices on the remaining buyers (or markets), thereby recouping losses. The two usual ingredients of predation, early sacrifice of profits followed by later recoupment, are therefore present in our theory as well.

In our model, the incumbent may exclude a more efficient rival even if the latter can approach buyers and submit bids at the same time as the incumbent. It is the interaction between scale economies and an incumbency advantage which makes exclusion possible. To see why, consider a case where the two firms compete for two new consumers who buy in sequence. Imagine that the incumbent also serves some non-contestable buyers, who bought from it in the past and are not willing to switch to another supplier. Instead the rival, who is a recent entrant, has no (or fewer) captive buyers. Under scale economies, this asymmetry may lead to the following situation: even though the rival’s cost to supply both of the new buyers is lower than the incumbent’s, a single buyer is insufficient for the rival to reach efficient scale and thus its cost to supply only one new buyer is larger than the incumbent’s. In turn, this implies that - conditional on securing the first buyer - the incumbent would be able to extract higher revenues than the rival from the second buyer. Hence, when firms compete for the first buyer - anticipating that, due to scale economies, who secures the first buyer will also secure the second - there will be two effects at play. On

1 Skepticism about predatory pricing was expressed in a very influential article by McGee (1958). See Yamey (1972) for a critical discussion of McGee’s arguments.

2 Kreps and Wilson (1982) are the main reference for reputation-based predation models. Milgrom and Roberts (1982) explain predation through a signaling model, which has later been used by Saloner (1987) to model predation for takeovers, by Scharfstein (1984) to model test-market predation, and by Fudenberg and Tirole (1985) to show how predation might limit the ability of a new entrant to infer about its profitability. See Bolton and Scharfstein (1990) for a theory which models predation in (imperfect) financial markets, by putting on firmer grounds the so-called ‘long purse’ theory of predation.

3 The debate remains still alive and the discussion has moved to the extent to which these theories provide workable criteria to identify real cases of predation. See Bolton, Brodley and Riordan (2000, 2001) and Elzinga and Mills (2001).

4 Cabral and Riordan (1994, 1997) also rationalize predation in the absence of information asymmetries. For a discussion, see the end of this section. In Harrington (1989) joint predation is used to sustain collusion when entry barriers are low: if entry took place collusive firms would coordinate on a policy of predatory prices.
the one hand, higher overall efficiency makes the rival more aggressive; on the other hand, the perspective of higher rent extraction makes the incumbent more aggressive. We show that if the (overall) efficiency advantage of the rival is not strong enough, then it is the incumbent which will make the winning bid for the first buyer. Predation will arise at the equilibrium and is welfare detrimental.

Perhaps the simplest setting where to see this mechanism at work is one where the incumbent has already sunk an entry cost f, while the rival has not, but it has a lower (constant) marginal cost than the incumbent. Also, entry is viable only if both buyers buy from the entrant. Here, if the incumbent manages to serve the first buyer, it will extract the monopoly price from the second buyer, whereas if the entrant serves the first buyer, it will be able to charge only the duopoly price to the second buyer. If the entrant’s efficiency advantage is small enough, the incumbent will bid more aggressively for the first buyer, and predation will take place at equilibrium. This simple example, however, should not suggest that our mechanism applies only when the prey is a new entrant. Indeed, we will show that the same logic also applies when the prey is a smaller rival that already operates in the market and whose expansion is discouraged by predatory pricing.

Let us close the introduction with a note on the related literature. Obviously, our paper belongs to the literature on predatory pricing we have referred to above. The variant of our model based on supply-side scale economies shares some similarities with Cabral and Riordan (1994, 1997). They study a duopoly model with endogenous learning-by-doing and show that an incumbent may have an incentive to choose aggressive pricing in a first period to speed up learning, gain future efficiency and, by stealing demand from the rival, to deny efficiency to the rival. If both effects are sufficiently strong, the rival may be induced to leave the market. However, differently from our model, such an aggressive pricing policy is not necessarily welfare detrimental, as the incumbent’s acquired efficiency may benefit consumer and total welfare despite the exit of the rival. Also, in their setting below-cost pricing is not necessary to exclude.

The purpose of our analysis is instead to identify the circumstances under which aggressive pricing leads to the exclusion of a more efficient rival, thereby reducing welfare. Also, in our analysis below-cost pricing turns out to be crucial to exclude.

5 Following Ordover and Saloner 1989, we shall term predatory those aggressive and exclusionary pricing policies that, when deployed, have the effect of lowering social welfare. In our model, the incumbent’s pricing policy is predatory because, by excluding the more efficient supplier, it reduces total welfare. Alternatively, one may refer to the notion of predation as defined by Bolton et al. (2000): predatory pricing is defined as a price reduction that is profitable only because of the added market power the predator gains from eliminating, disciplining or otherwise inhibiting the competitive conduct of a rival or potential rival. In our model, the incumbent’s aggressive pricing to the first buyer is profitable only because, by preventing the rival to reach efficient scale, it softens the intensity of competition in the second period and allows the incumbent to charge higher second-period prices.

6 In this case, if the rival could credibly commit to enter the market, the incumbent would never set below-cost prices for the first buyer. Hence, ‘predation is unprofitable but for its effect on the rival entry decision’ (see Cabral and Riordan 1997).

7 A recent paper, Besanko et al. (2011), isolates advantage-building and advantage-denying incentives for aggressive pricing in a fully dynamic model à la Cabral and Riordan (1994). Using numerical simulations, they show that the efficiency-denying incentive is the one leading to welfare detrimental effects. In our paper the advantage-building motive is not indispensable, as the incumbent does not necessarily become more efficient when it increases production during predation - see for instance our entry-deterrence example in Section 3.1.
Note that the mechanism we propose may help rationalize predation in particular cases where standard theories may not apply. In other cases, however, our mechanism might well co-exist with other rationales for predation. For instance, an incumbent may prey upon a rival in the initial stages of a market, both as an attempt to deprive it of the scale it needs to operate successfully, and as a way to signal that it would behave aggressively in the future - consistent with what suggested by incomplete information models. Further, our mechanism is consistent with Bolton and Scharfstein (1990)’s financial predation model: predation, by denying profits to the rival, may limit its access to outside funding.

Our paper is also very closely related to the more general literature on exclusion and may be seen as an application of Bernheim and Whinston (1998) where inefficient exclusion arises due to the existence of *contracting externalities* that agents fail to internalize. In our case, the agents who take their decisions in the early periods (the incumbent, the entrant and the early buyers) do not internalize the payoff of subsequent buyers, thereby making it possible for an equilibrium where the more efficient entrant is excluded, even though exclusion reduces total welfare.

Contracting externalities are central also in Segal and Whinston (2000) and Carlton and Waldman (2002) where the incumbent deters efficient entry in an environment characterized by scale economics and multiple buyers. In Segal and Whinston (2000) exclusive dealing contracts are the tool that the incumbent uses so as to secure critical buyers and deprive the more efficient entrant of the scale it needs to be viable. An important difference, though, is that - in addition to the *incumbency advantage* which exists in our paper as well - in Segal and Whinston (2000) the incumbent also enjoys a *first-mover advantage* (i.e., it can make offers to buyers before the entrant could materialize and make counter-offers), which facilitates exclusion. Indeed, in the case where buyers are approached sequentially, where the timing of the game is the closest to our model, entry deterrence does not require any sacrifice of profits by the incumbent. In our paper, instead, the incumbent needs to sell below cost to early buyers to achieve exclusion.

In Carlton and Waldman (2002) the incumbent operates in two markets, a primary market where it will face entry in a later period (period 2), and a complementary market where the threat of entry materializes in period 1. In a first variant of the model scale economies arise from the supply side. In this context, tying the two products makes it impossible for the entrant to collect revenues from the sales of the complementary product in period 1. Without such revenues the fixed costs to enter the two markets cannot be covered (second period revenues are insufficient) and entry in period 2 does not occur altogether. Tying, then, represents a defensive

*What is crucial in our paper is the fact that predation denies efficient scale to the rival firm, thereby making it a weaker competitor in the following period and generating rents extraction more favourable to the incumbent. And that is the precise reason why predation is welfare-detrimental.

Another paper where exclusion may arise in the absence of a first mover advantage is Gans and King (2002). Differently from our setting, suppliers are perfectly symmetric and their focus is on asymmetries in contracting opportunities: there exist large buyers that can contract ex-ante with suppliers and small buyers - whose demand is insufficient for a supplier to reach efficient scale - that can only trade ex-post on a single price mass market. In this environment, it is in the interest of large buyers to commit ex-ante to exclusivity with one supplier so as to prevent the rival supplier from achieving the efficient scale. This will stifle competition in the mass market, thereby allowing to extract more rents from small buyers. These rents are appropriated by large buyers through the ex-ante contracting. Allocative inefficiencies arise because small buyers pay a too high price, but there is no exclusionary intent in suppliers’ behaviour.
strategy that enables the incumbent to protect its dominant position in the key primary market.

Our application with scope economies, where the two markets are related by common costs rather than by complementarity in consumption, differs from this variant of Carlton and Waldman (2002) because they assume that the first-period entry cost has to be paid before price offers are made. As a consequence, in order to deter entry, tying must be decided before entry materializes and must be irreversible. Hence, the incumbent must enjoy a fist-mover advantage which is not necessary in our model. The difference in timing also explains why, in Carlton and Waldman (2002), virtual tying through aggressive pricing of the complementary product in period 1 cannot exclude. The key difference, though, is that their model is essentially a model of entry deterrence, where scale economies are due to fixed and sunk entry costs, whereas in our model predatory pricing can not only deter entry but also limit expansion of an existing competitor (as long as scale matters for efficiency).

This difference also applies to the network externalities versions of our model and of Carlton and Waldman (2002). This second variant of Carlton and Waldman (2002) assumes a positive entry costs to operate in the primary market in period 2, whereas in the complementary market entry costs are zero. This latter assumption implies that, similarly to our model, the incumbent does not need to rely on a first-mover advantage to exclude, and not only tying but also low pricing for the complementary product in period 1 may be effective exclusionary practices. However, the difference is that in our model the reason why at that stage the incumbent manages to price more aggressively than the rival is that it relies on a larger installed base of customers. This makes the quality of the incumbent’s network with a single cohort of buyers larger than the rival’s and enables the incumbent to extract more rents than the rival from the second cohort of customers, once secured the first one. In Carlton and Waldman (2002), instead, the key reason is that the rival has not paid the entry costs to operate in the primary market yet. Hence, if the incumbent secures the first cohort, then it will be able to monopolize the system market in the second period, whereas if the rival secures the first cohort, then it will always have to compete with the incumbent and will extract only duopoly rents in the second period. In other words, in their model (virtual) tying is profitable for the incumbent only if it leads to entry deterrence, whereas in our model predatory pricing is profitable also when it marginalizes an existing rival.

To conclude, our paper is also related to models where exclusion occurs due to discriminatory offers, as in Innes and Sexton (1994)’s ”divide and conquer” strategy and in Giardino-Karlinger and Motta (2012).

The paper continues thus. Section 2 discusses a few recent cases that can be interpreted in the light of our theory. In Section 3 we will present the basic model with supply-side scale economies, that we keep as simple and parsimonious as possible so as to highlight our predation mechanism and discuss the conditions under which it holds. Then, we discuss the robustness of our results in Section 4. In Section 5 we show that predation may also occur in markets characterized by demand-side scale economies, due for instance to the existence of network externalities or of two-sided markets. Section 6 will conclude the paper.
2 Recent cases

In the US, after the 1993 Supreme Court judgment in Brooke Group and its requirement that plaintiffs prove recoupment (that is, the ability of the predator to obtain profits that outweigh the profit sacrifice sustained during the predatory period), there have been no successful predatory cases. Instead, in Europe there have been a number of recent predation cases, and in some of them both scale economies and strong initial advantages on the side of the incumbent seem to play an important role, in a way that is consistent with the theory proposed here. In this Section we shall briefly describe some of these cases. Of course, this is not enough to claim that there has been actual predation, but simply that there might be a theory of harm which supports the allegation of predation. To make a precise statement on the merit of a case, we should have access to more detailed information (especially on relevant cost measures) that is not publicly available. Likewise, EU competition law does not require to prove that there is a high probability of recoupment, implying that the available documents do not shed much light on this issue. Still, in what follows we shall try to discuss to what extent recoupment may have been possible in some EU cases. In any case, the message of this paper is not that predation is a pervasive phenomenon that arises whenever there exist scale economies and an incumbency advantage. Rather, we are interested in identifying those (likely exceptional) situations where predation is likely to occur, as well as those (far more common) situations where predation will be unlikely.

In May 2009, the European Commission (EC) imposed on Intel the highest fine in history (more than one billion euro), for implementing a strategy aimed at foreclosing competitors from the market of Central Processing Units for the x86 architecture. More particularly, Intel had awarded conditional rebates (and engaged in other restrictive practices) to major PC manufacturers (OEMs), and to Media Saturn Holding, Europe’s largest PC retailer. According to the EC, these rebates were below costs, and were motivated by rival firm AMD’s growing competitive threat. The EC does not spell out a theory of harm, but the facts of the case seem to be consistent with our predation mechanism. There are significant scale economies in the x86 CPU market due to the large sunk costs in R&D and in production facilities. Intel is strongly dominant and a vast proportion of market demand is considered to be non-contestable. This strong incumbency advantage is reinforced by an asymmetry in production facilities and by the time and cost required to expand capacity. Also, the orders of some buyers seem to be crucial for the success of rivals:

"(T)he Decision also indicates that certain OEMs, and in particular Dell and HP, are strategically more important than other OEMs in their ability to provide a CPU manufacturer access to the market. They can be distinguished from other OEMs on the basis of three main criteria: (i) market

10The EC devotes a considerable part of its decision to the analysis of the as-efficient competitor test to establish whether prices were below the cost of a competitor as efficient as Intel. The proportion of the market which was captive to Intel rather than contestable was controversial in its precise quantification, but it was undoubtedly relevant.
11See section 3.3 of the Decision. The EC stresses that "... once entry has taken place, a manufacturer’s production capacity is limited by the size of the existing facilities. Expanding output requires additional (sunk) investment into new property, plant and equipment as well as several years’ lead time." (para. 866 of the Decision.)
It is also worth noting that - similar to our model - Intel and AMD were competing in prices for the contestable portion of the market. The issue of recoupment was not discussed in the decision. Nevertheless, it is worth noting that: (a) only few large and critical buyers were apparently offered important rebates, so - similar to our model - one might speculate that higher prices to smaller customers could offer opportunity of recouping losses on the large ones; (b) all rebates were periodically renegotiated (with a quarterly frequency) so that Intel had the possibility to discontinue discounts as soon as it perceived that AMD’s expansion projects were failing; (c) barriers to entry (and to expansion) were considered to be very large, so it was unlikely that new entrants could immediately discipline Intel and prevent it from increasing prices should AMD’s threat have disappeared.

Another interesting case is Telecom Italia. In 2004 the Italian Antitrust Authority found that Telecom Italia (TI), the public monopolist before the liberalization process, had abused a dominant position by using a variety of practices, including setting prices in a selective and aggressive way with the aim of taking away key customers from rivals, thereby hindering their expansion. Scale and scope economies are pervasive in telecommunications and TI had strong incumbency advantages over recent entrants, which still had to build up or fully develop their infrastructure (viable only if they reached sufficient scale) and customer basis. Another feature that makes this market similar to the one described in our model is that part of the exclusionary strategy occurred over tender auctions where firms competed in the pricing conditions to supply fixed and mobile telephony services to government bodies and large business customers. Again, recoupment is not discussed in this decision but its feasibility may lie on the selective nature of the discounts, allegedly offered only to few key buyers.

In November 2008 the UK Office of Fair Trading (OFT) found that Cardiff Bus had infringed Chapter II of the UK Competition Act 1998 by engaging in predatory conduct in the local bus market. In response to 2 Travel’s entry into with a new no-frills bus service, Cardiff Bus introduced its own no-frills bus service (the ‘white service’), running on the same routes and at similar times of day as 2 Travel’s services. The white services were run at a loss until shortly after 2 Travel’s exit, when Cardiff Bus discontinued them. In this case as well, scale economies were important both at the level of single routes (consumers value frequency of services) and at the level of the bus network (consumers value the combinations of schedules and routes). While Cardiff Bus was the (dominant) incumbent and had already developed a strong network, other bus companies (in particular 2 Travel) had fairly limited networks and would have had to incur substantial costs to expand them. Arguably, 2 Travel took the first step of a wider

12For instance, at para 956 of the Decision, there is a reference to AMD competing with, but not being able to match, Intel’s offers: ‘AMD was not in a position to offer a compensating rebate of the size required by HP.’
14Internal documents showed TI’s management was willing to incur losses in order to win - or win back - important business customers.
15For instance, at Para. 275 of the Decision, a cable rival, Fastweb, argues that Telecom Italia’s strategy aimed at eliminating competitors’ incentives to invest in new and non-recoverable alternative telecoms infrastructure, with the ultimate effect of inhibiting the development of competitors in the long-run.
entry strategy, that was blocked when still nascent by Cardiff Bus’ conduct. The OFT discussed recoupment in this case, and found that recoupment was very likely. Barriers to entry, mostly due to limited depot availability, as well as a reputation for being a very aggressive incumbent, meant that Cardiff Bus was likely to be undisturbed in the market. Moreover, the no-frills service which was run below costs was immediately discontinued after 2 Travel’s exit, and since then Cardiff Bus increased its fares by approximately 40 per cent.

Napp is another interesting case that can be read in the spirit of the two-sided markets variant of our model. In 2001 the OFT found that Napp, a pharmaceutical company, had abused its dominant position in the market for the supply and distribution of sustained release morphine in the United Kingdom. This infringement involved both a charge of predatory pricing in the hospital segment and one of excessive pricing in the community segment (Napp had a stable market share well in excess of 90% in both segments). While it may appear odd that Napp could engage in too low prices in a market segment and too high prices in another market segment, our theory may help interpret the case. The hospital segment and the community segment differ substantially. Hospitals have a high demand elasticity (pharmaceuticals have to be paid out of their budget) and can count on the advice of specialist doctors for an assessment of new competing products. In the ‘community segment’, buyers are general practitioners (GPs) who prescribe products for their patients (with the National Health Service paying the bills), and who - not being experts - tend to choose those products which have already been prescribed in hospitals. This can be seen as an asymmetric two-sided market, where hospitals mostly care about prices (and do not care about choices made by GPs), while the demand of the community segment strongly depends on the choices made by hospitals. As we shall discuss in Section 5.2, an incumbent like Napp, who has already built a solid reputation, may want to sell below costs to the crucial side of the market (the hospital market) to make sure the rival does not win it, thereby deterring the rival’s activity also in the other side of the market (the community segment) - whose demand follows closely the choice made by hospitals. As a result, the incumbent can behave like a monopolist on the community side of the market, recouping any losses made to win the other (hospital) side. The scope for recoupment in the community segment is reinforced by high marketing costs, in particular direct marketing to GPs given how numerous and scattered they are.

Sanofi-Aventis, a French case, had several features in common with **Napp**. Sanofi-Aventis had a dominant position in the market for low molecular weight heparins (an anti-coagulant). The French Economy Ministry alleged that the firm engaged in predatory pricing in the hospital segment so as to lock patients in for treatment once out of the hospital, thereby dominating the community segment and managing to charge supra-competitive prices in that segment. However, there were at least three crucial differences with **Napp**, which in our opinion justified the dismissal of the case by the French Competition Authority. First, Sanofi-Aventis had 70-75% of the hospital segment and 60-65% of the community segment, and it faced competition by two large well-established global players, Pfizer (10-15% in hospitals and below 5% in community)

17See Section 7H of the Decision.
19Autorité de la Concurrence, Décision 10-D-02 relative à des pratiques mises en œuvre dans le secteur des héparines à bas poids moléculaire, 14 January 2010.
and GlaxoSmithKline (10-15% in both segments), and by a mid-sized player, Léo Pharma (with a small share in hospitals but a 20-25% share in the community segment at the end of the period). This raises doubts about the rationality of a predatory strategy and the likelihood of recoupment. Second, it is difficult to see an intention to pursue a predatory strategy, since Sanofi-Aventis did not start, but simply followed the rivals in their price reductions in the hospital segment. Third, the market data did not seem consistent with the theory of harm, since heavy discounting in the hospitals’ segment did not result in a higher market share in the community segment and since Léo Pharma’s share in the community segment increased during the period while its share in the hospital segment decreased.

In 2001, the EC found that Deutsche Post (DPAG) had abused a dominant position in the market of mail order parcel services. The EC argues that by making use of predatory pricing and fidelity rebates, DPAG tried to prevent competitors in the mail-order service from developing the infrastructure needed to compete successfully. The importance of scale and scope economies in the postal service is clear, as well as DPAG’s incumbency advantage: it was the former state monopolist and, as such, could rely on a fully developed distribution infrastructure and on exclusive right in the market for letters and small parcels. Also, the idea that the incumbent’s pricing policy aimed at depriving the rivals of economies of scale and scope emerges clearly from the following quote (where ‘cooperation partners’ are customers with very large orders):

"Contrary to what DPAG maintains, all of the disputed fidelity rebates are likely to have an effect on the opportunities that other suppliers of mail-order parcel services have to compete. Successful entry into the mail-order parcel services market requires a certain critical mass of activity (some 100 million parcels or catalogues) and hence the parcel volumes of at least two cooperation partners in this field. By granting fidelity rebates to its biggest partners, DPAG has deliberately prevented competitors from reaching the ‘critical mass’ of some 100 million in annual turnover. This fidelity rebating policy was, in precisely the period in which DPAG failed to cover its service-specific additional costs (1990 to 1995), a decisive factor in ensuring that the ‘tying effect’ of the fidelity rebates for mail-order parcel services maintained an inefficient supply structure [...]” (Deutsche Post, para. 37)

The application of our base model discussed in Section 3.2 may help interpret the Deutsche Post case. One rationale for predation might have been that, given the existence of important common costs with other postal services, mail-order operators could later start to compete with other services of Deutsche Post. Hence, by predating in the market which opened first, Deutsche Post might have preserved its monopoly position in all the markets where it operated.

In 2003, a subsidiary of France Télécom, Wanadoo Interactive, was fined for predatory pricing in high-speed internet access services to residential users. The EC (whose decision was later upheld by the Court of First Instance) found that retail prices were below average variable costs.

21 Indeed, after the end of the abuse, some competitors managed to reach such critical mass and operate across adjacent markets. For instance, Hermes Versand Service was initially created for the mail-order trade’s own use, but its infrastructure was later used to convey parcels for third parties and in 2000 became the sixth largest courier, express mail and parcels operator in Germany. (See Deutsche Post, para. 38 and footnote 64)
22 Case COMP/38.233, [2005] 5 CMLR 120.
between March 2001 and August 2001; and then (significantly) below total costs up to October 2002. It then made three additional points. First, it relied on internal company documents to prove predatory intent (but managers’ aggressive language is often consistent with more competitive explanations). Second, although not required by EU case-law, the EC looked at recoupment and found it was plausible, because of high entry barriers (such as disincentives for existing customers to change supplier; the costs for a potential competitor to enter and acquire critical size; and the major difficulty in replicating a telecommunications network and entering upstream). Wanadoo’s high margin levels after October 2002 were also considered evidence that recoupment was plausible. Third, the EC also found that Wanadoo’s pricing did have the effect of increasing its market share to the detriment of competitors. Network externalities are a source of scale economies and our theory of predation could in principle be applied to network markets (see Section 5 below). However, as we shall show in Section 4.6, in the presence of growing markets (and in 2001 the broadband market was bound to increase very strongly), predation is a less likely equilibrium outcome, as the large "prize" of future profits are not likely to deter entry or expansion of efficient rivals. The broadband market in the early 2000s was a nascent, growing market, with strong network externalities. Operators getting an early foothold in this market would be the likely "winners", i.e. obtain a strong competitive advantage and thus quickly gain market share. Moreover, below-cost prices at an early stage of a market can help consumers overcome uncertainties about the adoption of a new technology, and they can lead to learning effects. More than with predatory conduct, the above facts might well be consistent with a different interpretation, that is, competition for the market.

3 A simple model

In this Section, we introduce our basic model with supply-side scale economies. There are two contestable buyers/markets, \(B_1 \) and \(B_2 \). Each of them demands one unit of a homogeneous good for any price (weakly) lower than \(v \).23

An incumbent firm (denoted as \(I \)) and a rival firm (denoted as \(R \)) compete for the two buyers. We denote as \(C_i(q_i) \) the total cost function of firm \(i = I, R \), and we assume that firm \(R \) is more efficient than the incumbent in producing the two contestable units (assumption A1), but is less efficient if it produces only one unit (assumption A2):

\[
C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I) \quad (A1)
\]
\[
C_R(\bar{q}_R + 1) - C_R(\bar{q}_R) > C_I(\bar{q}_I + 1) - C_I(\bar{q}_I) \quad (A2)
\]

where \(\bar{q}_I > \bar{q}_R \geq 0 \) denote the demand of some captive (i.e. non contestable) buyers/markets the two firms may possibly supply. Captive buyers may be past customers who have arbitrarily high switching costs and thus continue to buy from firm \(i \), or buyers located in other geographical areas where firm \(i \) is active and which are separated by arbitrarily high transportation costs, or even past buyers whose choice affects present production costs, for instance due to learning-by-doing effects. Note that we assume that firm \(I \) benefits from an incumbency advantage: it has

23The extension to \(N \) buyers would leave qualitative results unchanged. See the discussion in Section 4.7. The assumption of inelastic demands is also done for simplicity: the main difference is that by assuming elastic demands exclusion would entail not only a productive inefficiency but also an allocative inefficiency.
been on the market for a longer period than the rival or it has developed a more extended activity in other geographical areas, which translates in a larger number of captive buyers than the rival firm.

A natural environment where assumptions A1 and A2 may hold is the one where the rival is a new entrant that has not yet paid a fixed entry cost \(f \), while the incumbent has already supplied past buyers and has already paid this cost when competition for the first buyer/market starts. Firms’ unit variable costs are constant with \(c_R = 0 < c_I \). In this context \(\bar{q}_I > 0 = \bar{q}_R \), \(C_R(2) - C_R(0) = C_R(1) - C_R(0) = f \) and \(C_I(\bar{q}_I + 1) - C_I(\bar{q}_I) = C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1) = c_I \).

Hence, assumptions A1 and A2 translate into:

\[
c_I < f < 2c_I \tag{1}
\]

where the second inequality indicates that the incumbent’s total cost to supply the two contestable buyers/markets is larger than the entrant’s, whereas the first inequality indicates that on a single buyer/market the incumbent’s cost is lower. We will develop this specific application in Section 3.1 where we will refer to sectors such as telecommunications and transportations where these assumptions are likely to hold: entry requires to set up large and complex infrastructures, business customers (such as firms or units of the public administration) solicit tender offers from suppliers, the first bids may be solicited before the new entrant could undertake the entry investment. In Section 3.2 we will develop another application where we adjust assumptions A1 and A2 to account for markets/segments related by scope economies and where entry in one market/segment is feasible immediately, because that market has been recently liberalized, whereas other markets/segments will be liberalized in the future. An example is represented by postal services, where a large infrastructure is used to provide different services, some liberalized earlier than others.

Note, however, that the validity of assumptions A1 and A2 is not confined to situations that involve a new entrant. Think, for instance, of an environment with learning-by-doing effects. Both the incumbent and the rival are already active, but the rival is a recent entrant while the incumbent has been active for longer and has produced more in the past. It is then possible that, having accumulated more experience, the incumbent manages to supply an additional buyer/market at lower costs than the rival. However, supplying both buyers/markets allows the rival to fill the gap and to produce more efficiently than the incumbent. More generally, the same argument applies to situations where both firms are in the market and there are scale economies that the incumbent already exploits thanks to its larger number of captive customers. As a result, the incumbent operates at lower incremental costs than the rival on a number of earlier contestable buyers. Serving all of the contestable buyers would instead be sufficient for the rival to achieve efficient scale and produce at lower costs than the incumbent.

Note also that it is the combination of these two assumptions that makes the problem interesting. Assumption A1 allows us to restrict attention to situations where excluding the rival is welfare detrimental. Assumption A2 creates the scope for exclusion. If the rival was more efficient than the incumbent in supplying a single contestable buyer, inefficient exclusion would never take place.

\[24\] A natural interpretation is that the incumbent is the former monopolist in markets that have been liberalized.

\[25\] The cost functions assumed in Rasmusen et al. (1991), where average costs are decreasing until a given level of production and then become constant, may display these properties.
Finally, we assume that \(v > C_R(\overline{q}_R + 1) - C_R(\overline{q}_R) \), and that:

\(C_R(.) \) is strictly concave over the two contestable units, while \(C_I(.) \) is weakly concave\(^{26}\) (A3).

The timing of the game is as follows, with the two buyers being approached \textit{sequentially}:

1. First period.

 (a) Firms \(I, R \) simultaneously set prices \(p_1^I \) and \(p_1^R \) to buyer \(B_1 \).

 (b) \(B_1 \) decides from whom to buy and the transaction takes place.

2. Second period.

 (a) Firms simultaneously set prices \(p_2^I \) and \(p_2^R \) to buyer \(B_2 \).

 (b) \(B_2 \) decides from whom to buy and the transaction takes place\(^{27}\).

The assumptions that price offers to buyers are made sequentially and that they can be discriminated over-time play an important role for our results. We will discuss their relevance for the results in sections 4.1 and 4.3 respectively. Section 4 will also discuss the robustness of our results to other simplifying assumptions adopted in the base-line model of this Section.

We now turn to the description of the subgame perfect Nash equilibria of these game, as stated by the following proposition:

\textbf{Proposition 1.} (Sequential - and discriminatory - offers) There exists a threshold level \(C_P \) of firm \(R \)'s cost of producing the two units, with \(C_P < C_I(\overline{q}_I + 2) - C_I(\overline{q}_I) \), such that:

- **(Predation)** If \(C_R(\overline{q}_R + 2) - C_R(\overline{q}_R) > C_P \), then the incumbent supplies both buyers. It sells below cost to the first buyer, while recouping losses on the second.

- **(Entry/Expansion)** If \(C_R(\overline{q}_R + 2) - C_R(\overline{q}_R) \leq C_P \), then firm \(R \) supplies both buyers. The price paid by the first buyer is lower than the price paid by the second.

The threshold \(C_P \) is (weakly) decreasing in \(\overline{q}_I \) and (strictly) increasing in \(\overline{q}_R \).

\textit{Proof.} Let us move by backward induction. Let us consider first the subgame following \(B_1 \) choosing the incumbent. Standard Bertrand competition for the second buyer takes place, with the incumbent’s cost to supply \(B_2 \) being lower than the rival’s:

\[
C_I(\overline{q}_I + 2) - C_I(\overline{q}_I + 1) \leq C_I(\overline{q}_I + 1) - C_I(\overline{q}_I) < C_R(\overline{q}_R + 1) - C_R(\overline{q}_R),
\]

the first inequality following from weak concavity of \(C_I(.) \) and the second from assumption A2. Hence, the incumbent serves the second buyer, at a price \(p_1^2 = C_R(\overline{q}_R + 1) - C_R(\overline{q}_R) \). (Here, and in what follows, we disregard equilibria in weakly dominated strategies.)

\(^{26}\)Weak concavity of the incumbent’s cost function simplifies the exposition. Indeed, we could allow \(C_I(\overline{q}_I) \) to be ‘moderately’ convex so as to ensure that a firm is more efficient in producing its second unit than the rival in producing its first unit. This property follows directly from A1 and A2 when the incumbent cost function is weakly concave.

\(^{27}\)The results of the analysis would not change if both transactions took place at the end of the second period.
Let us consider now the subgame following B_1 choosing the rival. In this case the rival’s cost to supply B_2 is lower than the incumbent’s cost:

$$C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1) < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1) \leq C_I(\bar{q}_I + 1) - C_I(\bar{q}_I),$$

the first inequality following from assumptions A1 and A2, the second from weak concavity of $C_I(.)$. Hence, it is the rival that supplies the second buyer, at a price $p_R^2 = C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)$.

Let us move to competition for the first buyer. Each firm anticipates that, by securing the first buyer, it will be able to supply also the second, thereby obtaining a total profit equal to:

$$\pi_i = p_i^1 + p_i^2 - (C_i(\bar{q}_i + 2) - C_i(\bar{q}_i))$$

with $i = R, I$. We can thus denote as $\tilde{C}_i = C_i(\bar{q}_i + 2) - C_i(\bar{q}_i) - p_i^2$, with $i = I, R$, each firm’s ‘adjusted’ cost to supply the first buyer, which corresponds to the total cost of producing the two units diminished by the rents extracted from the second buyer. Note that, by assumption A2, the incumbent extracts more rents than the rival from the second buyer (i.e. $p_i^2 > p_R^2$).

Hence, even though the rival is more efficient than the incumbent in producing the two units, it is not necessarily the case that its ‘adjusted’ cost is lower. More precisely, $\tilde{C}_R \leq \tilde{C}_I$ if and only if the rival’s cost advantage over the two units dominates the incumbent’s cost advantage over a single unit:

$$[C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)] \geq [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)]$$

(5)

Note that if assumption A1 is not satisfied and the rival is less efficient than the incumbent not only on a single unit but also on the entire production, then the rival will never win the first buyer. However, exclusion is not welfare detrimental in this case. Instead if assumption A2 is not satisfied and the rival is more efficient than the incumbent not only on the entire production but also on a single unit, then the rival’s adjusted cost is always lower than the incumbent’s. In other words, the rival always secures first buyer and exclusion would never take place. When assumption A1 and assumption A2 are both satisfied, the rival secures the first buyer if (and only if) its cost of producing the two units is sufficiently low:

$$C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) \leq C_P \equiv C_I(\bar{q}_I + 2) - C_I(\bar{q}_I) - [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R) - (C_I(\bar{q}_I + 1) - C_I(\bar{q}_I))]$$

(6)

with $C_P < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)$ by assumption A2. In this case firm R sells at a price $p_R^{1*} = \tilde{C}_I$.

Instead, when $C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) > C_P$, the incumbent secures B_1 and sells at a price $p_R^{1*} = \tilde{C}_R$.

Note that:

$$p_R^{1*} = \tilde{C}_R = C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) - [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1) \leq C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)$$

(7)

the first inequality following from assumption A1 and the second from weak concavity of $C_I(.)$.

Also:

$$p_R^{2*} = \tilde{C}_I = C_I(\bar{q}_I + 2) - C_I(\bar{q}_I) - [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1) \leq C_I(\bar{q}_I + 1) - C_I(\bar{q}_I) = p_R^{2*}$$

(8)
the first inequality following from assumption A2 and the second from weak concavity of $C_I(.)$. Weak concavity of $C_I(.)$ and strict concavity of $C_R(.)$ also imply that the threshold C_P is weakly decreasing in q_I and strictly increasing in q_R.

Proposition 1 shows that - if the rival’s cost advantage in producing both units is not too large - the game admits a unique equilibrium where exclusion of the (efficient) firm takes place due to a predatory strategy by the incumbent. Indeed, the incumbent sets a price below its own marginal costs of production in the first period of the game, therefore making losses on buyer B_1, to increase its price in the second period, therefore recouping its previous losses. The usual ingredients for predation, namely early profit sacrifice and subsequent recoupment, are thus present in this simple model.

Let us discuss some specific features of the predatory conduct that arise in our model. First, the exclusionary equilibrium arises even though the incumbent makes its move and submit bids at the same time as the rival. The source of exclusion is the interaction between the existence of scale/scope economies and the incumbency advantage enjoyed by firm I, which implies that the rival is less efficient than the incumbent in producing only one unit. Because of this, when it has already secured the first buyer, the incumbent is able to charge a price to the second buyer which is higher than the price that the rival is able to establish for B_2 when it has secured B_1. The expectation of higher rent extraction from the second buyer - ceteris paribus - will make the incumbent more aggressive when competing for the first buyer, an effect which may dominate the fact that the rival is more efficient overall and result in inefficient exclusion.\(^2^8\)

Second, prices below the incumbent’s marginal cost are necessary to exclude the more efficient rival. This distinguishes our theory from existing ones where below-cost pricing is not a prerequisite for predation.

Third, from the last item of Proposition 1, the stronger the incumbency advantage - as captured either by an increase in the number of the incumbent’s captive buyers q_I or by a decrease in the number of the rival’s captive buyers q_R - the more likely the predatory equilibrium. This is because a larger q_I makes the incumbent (weakly) more efficient in producing any of the two units. This, ceteris paribus, reduces the incumbent’s overall cost disadvantage and limits the rival’s rents extraction, thereby making it easier for the incumbent to win competition for B_1. Similarly, a lower q_R makes the rival less efficient in producing any of the two units, thereby reducing its overall cost advantage and increasing the rival’s rents extraction. This facilitates exclusion.

Finally, the above interaction may arise in situations where the rival is a potential entrant (like the one discussed in the application of Section 3.1) as well as in situations where the rival is already in the market and aims at expanding its activity by competing for new contestable units. Hence, this model predicts that the incumbent may adopt predatory pricing to deter entry but also to discipline a rival relegating it to a niche role.

\(^{28}\)Note that, conditional on having secured the first buyer, the incumbent extracts more revenues than the rival from the second buyer, but does not extract more profits. An alternative way to interpret our result is that exclusion may arise because the incumbent’s second-period profit disadvantage may be compensated by its superior cost efficiency on the first production unit.
3.1 Application 1: entry deterrence

In this section we illustrate a specific situation where the predation mechanism highlighted in Section 3 may arise. As anticipated at the beginning of Section 3, imagine that firms’ unit variable costs are constant, with \(c_R = 0 < c_I \), and that entering the market requires a fixed sunk cost \(f \), with \(f < v \). Firm \(I \) has already supplied past buyers (i.e. \(q_I > 0 \)) and thus has already sunk the entry cost \(f \) when competition for the first buyer/market takes place, while firm \(R \) is a new entrant (i.e. \(q_R = 0 \)) and has not. The timing of the game is the same as the one described in Section 3, with the addition of an explicit entry decision for firm \(R \) at the end of each period (and with the transaction with firm \(E \) taking place after the entry decision). In this environment assumptions A1 and A2 translate into \(c_I < f < 2c_I \).

Lemma 1. Equilibria of this game are as follows:

- **(Predation)** If \(f > 3c_I/2 \), then firm \(R \) and \(I \) set \(p_I^{*1} = p_R^{*1} = f - c_I < c_I \), the first buyer buys from \(I \), entry in the first period does not occur, firm \(R \) and \(I \) set \(p_I^{*2} = p_R^{*2} = f \), the second buyer buys from \(I \) and entry in the second period does not occur.

- **(Entry)** If \(f \leq 3c_I/2 \), then firm \(R \) and \(I \) set \(p_I^{*1} = p_R^{*1} = 2c_I - f < c_I \), the first buyer buys from \(R \), entry occurs, firm \(R \) and \(I \) set \(p_I^{*2} = p_R^{*2} = c_I \), the second buyer buys from \(R \).

Proof. Direct application of Proposition 1.

The scenario described here resembles markets where buyers decide on the basis of tender offers (such as public/private procurement markets), or where buyers are large business customers which negotiate prices with their suppliers, and where carrying out the entry investment takes time - think for instance of a situation where such an investment consists of building a large and complex infrastructure, carrying out construction work, obtaining licenses or working permits. In such cases it may be that the first market materializes and tender offers are solicited before the new entrant has had the time (or the ability) to sink (most of the) entry costs or to credibly commit to them. Examples of sectors which immediately come to mind are telecommunications, transportation, construction.

3.2 Application 2: scope economies

Another possible interpretation of the setting presented in Section 3 is that the two contestable buyers are each a buyer of a different product with competition for buyer 2 taking place after competition for buyer 1, and with economies from joint production. In that case the cost functions could be reinterpreted as total cost functions of the two products, and the interaction between scope economies and incumbency advantage would lead us to rewrite assumptions A1 and A2 as:

\[
C_R(\bar{q}_{R1} + 1, \bar{q}_{R2} + 1) - C_R(\bar{q}_{R1}, \bar{q}_{R2}) < C_I(\bar{q}_{I1} + 1, \bar{q}_{I2} + 1) - C_I(\bar{q}_{I1}, \bar{q}_{I2}) \quad (\hat{A}1)
\]

\[
C_R(\bar{q}_{R1}, \bar{q}_{R2} + 1) - C_R(\bar{q}_{R1}, \bar{q}_{R2}) > C_I(\bar{q}_{I1}, \bar{q}_{I2} + 1) - C_I(\bar{q}_{I1}, \bar{q}_{I2}) \quad (\hat{A}2)
\]

It is easy to show that the main results of our model carry over to this revised setting: the incumbent may predate in the first market to preserve its dominant position in the other market.
Similarly, predation may arise if in the first period the rival can enter/expand only in the market for product 1, while in the second period entry/expansion is allowed in both product markets. This may have been the case in some recently liberalized markets, such as postal services, where new entry is allowed in some segments of the market (mail-order parcel services, business-to-business mail), while the former public monopolist keeps a ‘reserved area’ for some period after the liberalization.\footnote{\textit{Deutsche Post}, where DP had exclusive rights to carry letters and items weighing less than 200 g.} or it may be the case where tariffs or other barriers to trade are being phased out at different speeds in different markets, so that a new firm might enter some markets immediately, but will be able to enter a particular foreign market only in the future. Hence, present scope economies and an incumbency advantage, predatory pricing may arise in the market which open first, to preserve the incumbent’s dominant position across all the markets where it is active.

4 Discussion

In this Section, we discuss which assumptions behind the model drive the predation result. We also study welfare effects.

4.1 Intertemporal discriminatory pricing v. uniform pricing

We have assumed that buyers can be charged different prices across periods, thus allowing for intertemporal price discrimination. If firms were instead obliged to charge the same price to all buyers, then predation would never occur. Intuitively, the incumbent has an incentive to price aggressively and suffer losses on the first buyer only if it can recoup such losses on the later buyer. Under intertemporal uniform pricing, instead, if the incumbent wanted to cut prices, it would have to do so for all buyers. Then, it will never want to sell at a common price $p = p^I_1 = p^I_2$ below $[C_I(q^I_I + 2) - C_I(q^I_I)]/2$ and, by assumption A1, it would not be able to exclude the rival.

4.2 Consumer surplus and welfare

The case of (intertemporal) uniform pricing provides us with the natural benchmark for welfare analysis. Indeed, if the incumbent was not allowed to behave strategically so as to exclude, that is if (intertemporal) price discrimination was forbidden, the unique equilibrium would be the one where the more efficient producer supplies both buyers at a total price equal to $p^1 + p^2 = C_I(q^I_I + 2) - C_I(q^I_I)$.

Thus predation harms consumers, as the total price paid by the two buyers is

\[p^*_1 + p^*_2 = \tilde{C}_R + C_R(q^R_{R} + 1) - C_R(q^R_{R}) > C_I(q^I_I + 2) - C_I(q^I_I) \]

(9)

precisely when $\tilde{C}_R > \tilde{C}_I$, i.e. when $C_R(q^R_{R} + 2) - C_R(q^R_{R}) > C_P$ and predation takes place. The predatory equilibrium is also welfare-inferior as the two buyers are supplied at a higher cost, thereby entailing a productive inefficiency. Obviously, with any downward-sloping demand function in addition to the productive inefficiency the exclusionary equilibrium would also entail a deadweight loss.
Note, however, that policy implications are less straightforward than they may appear at first sight. Banning (intertemporal) price discrimination does not unambiguously increase consumer surplus. In fact, if \(C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) \leq C_P \) (i.e. if predation does not occur at equilibrium), then allowing for price discrimination induces the suppliers to compete intensively for the first buyer, which results in a total price paid by the two buyers which is lower than the price paid under uniform prices:

\[
p_{R1}^* + p_{R2}^* = C_I(\bar{q}_I + 2) - C_I(\bar{q}_I) - [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] + C_I(\bar{q}_I + 1) - C_I(\bar{q}_I) < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)
\]

by assumption \(A2 \). Since firm \(R \) supplies both buyers anyhow, total welfare would be equal under price discrimination and under uniform pricing, but this is just because of inelastic demands. If we assumed elastic demands, total welfare would also be higher under price discrimination.

Measures aimed at discouraging price aggressiveness by dominant firms, for instance forbidding them from discriminating across customers or from selling below cost, would therefore result in a trade-off. On the one hand, they would reduce the chances that anti-competitive exclusion would take place; on the other hand, when the entrant is sufficiently more efficient than the incumbent, they would chill competition and result in higher prices.

4.3 Simultaneous offers

A crucial ingredient in our model is that price offers to buyers are made sequentially. If the game was modified so that firms bid simultaneously for both buyers and then buyers simultaneously choose the supplier, exclusion might arise, but only if buyers suffer from coordination failures.\(^{31}\) Consider, for instance, a situation where the incumbent offers a price \(p_1^I = p_2^I = C_R(\bar{q}_R + 1) - C_R(\bar{q}_R) \) and both buyers buy from it. If a buyer expects the other to choose the incumbent, it has no incentive to address firm \(R \) - even if it offers a lower price - because it anticipates that firm \(R \)'s cost to produce its unit alone exceeds the offered price, and that firm \(R \) would thus prefer not to serve the deviant buyer.\(^{32}\) Note that the mechanism behind exclusion is completely different from the one identified in Section 3. For this reason, when it relies on coordination failures, pricing below costs is not necessary for exclusion. Indeed, a continuum of prices can arise at equilibrium, each one supported by appropriate continuation equilibria concerning buyers’ decisions.

If, instead, bids are simultaneous but buyers choose sequentially (i.e. if suppliers in the first period can commit to future prices), then exclusion will not arise at the equilibrium. Sequentiality of buyers’ choice rules out coordination failures. The fact that prices for both buyers are set simultaneously expands the scope for profitable deviations with respect to the case of sequential bids. Consider, for instance, the price offers indicated in Proposition 1. Since \(p_1^I + p_2^I > C_I(\bar{q}_I + 2) - C_I(\bar{q}_I) \), then firm \(R \) has an incentive to slightly undercut both prices:

\(^{30}\)Forbidding below-cost pricing would lead to similar conclusions. In such a case firm \(R \) would supply both buyers and equilibrium prices would be \(p_{R1}^* = p_{R2}^* = C_I(\bar{q}_I + 1) - C_I(\bar{q}_I) \). Hence, when predation does not take place anyway, the first buyer pays a higher price while the second buyer pays the same price as in the case where below-cost pricing is feasible.

\(^{31}\)On this, see Fumagalli and Motta (2008).

\(^{32}\)Of course, miscoordination problems do not arise if price offers represent an irreversible commitment to serve a customer.
absent coordination failures, this would attract both buyers and would allow firm R to make positive profits. In order to block the rival’s deviations the incumbent should bid a pair of prices such that \(p_1^1 + p_2^2 \leq C_R(\bar{q}_R + 2) - C_R(\bar{q}_R) \) but such an offer would not be profitable for the incumbent by assumption A1. For a similar reason, however, equilibria where buyers are supplied by firm R - when they exist - exhibit prices \(p_{R1}^1 = p_{R2}^2 = \tilde{C}_I < C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1) \) for both buyers, as both prices must be immune to the incumbent’s deviation of undercutting on one buyer and recouping (i.e. setting \(p = C_R(\bar{q}_R + 1) - C_R(\bar{q}_R) \)) on the other.

4.4 Strategic buyers

In our model, buyers cannot take joint decisions and have to buy at exogenously given times. In this Section, we discuss what would happen if we relaxed these assumptions. If buyers could delegate an agent to decide on the ground of their joint payoff, then inefficient exclusion would not take place. The common agent would take into account the negative externality that buying from the incumbent in period 1 exerts on the second period purchase through a higher second period price. Using the terminology introduced by Bernheim and Whinston (1998), contracting externalities would not arise because all agents would be represented in the first period negotiation. Similarly, the negative externality exerted on the second period would be internalized if the same buyer purchased in both periods. Finally, inefficient exclusion could not take place if buyers could pool their orders in a single period. For instance, if the second buyer could ask the first buyer to purchase on its behalf as well, then the first buyer could buy two units and firm R would supply them. Similarly, there would not be exclusion if the first buyer did not incur a loss in delaying its purchase to second period. This means that agreements among buyers to establish a central purchasing agency, or to delegate their purchasing decisions to an entity which sets up a common public procurement system, or any other device which allows to take joint decisions, are pro-competitive in the situation we describe. Such agreements can be interpreted as expression of buyer power, which would then help prevent predation. In the next Section we will elaborate further on the role of buyer power for predation.

Consider now the case where buyers take independent decisions and cannot contract among them, but are free to choose when to buy. Clearly, buyers will engage in a race to be the first one to buy. If there was an initial date before which purchases were not possible, both buyers would buy at that date. We would therefore be back to the simultaneous moves case we discussed above, with exclusion arising because of coordination failures.

There is no general answer to the question of which of the settings discussed above would prevail in reality. Institutional features or legal constraints may explain the prevalence of a situation over another. For instance, legal constraints may prevent buyers from setting up joint purchases; the liberalization process may be designed in such a way that a market opens before another; the existence of a patent may determine why a market may become contestable after another; bureaucratic rules may delay public procurement determining different purchase periods; financial constraints may delay purchase decisions of some consumers; and so on.

33In all these cases, though, the first buyer will want to be compensated by the second one in order to receive at least the same surplus as when decisions are decentralized and intense first period competition leads to a very low first-period price.
4.5 Buyer Power

The discussion so far has assumed that the two buyers/markets have equal size and are small, i.e. their individual order is insufficient to guarantee efficient scale to the rival. Let us discuss now the implications for the analysis of the existence of large buyers, whose individual demand is instead sufficient for the rival to reach efficient scale and produce more efficiently than the incumbent.

If the large buyer is the second one, then predation cannot occur: the incumbent will not be able to extract more rents than the rival from the second buyer, once secured the first one, and will have no incentive to bid more aggressively than the rival for the first buyer. Similarly, predation cannot occur if both buyers are large. Also from this perspective, then, buyer power helps prevent predation.

Instead, predation is still possible if the large buyer comes first. If the rival is very inefficient in supplying the small buyer as compared to the incumbent, rents extraction in the second period would still be favourable to the incumbent. If this effect is strong enough, the incumbent can bid more aggressively than the rival for the first buyer and inefficient exclusion takes place.

Finally, the risk of predation is exacerbated if demand, in each of the two periods, is fragmented and buyers suffer from coordination failures. For simplicity, refer to the entry deterrence example. Imagine that in each period, instead of a single buyer with an order of size one, there are N buyers, each of them making an order of size $1/N$. In this context, as long as the entrant needs more than $1 + 1/N$ orders to reach efficient scale, the incumbent may exclude the rival without charging below-cost pricing. The mechanism is similar to the one discussed for simultaneous offers: if a single first-period buyer expects the others to accept the incumbent’s offer, then she has no incentive to address the entrant - even if the latter offers a lower price - as its individual order added to the total second-period orders would not be enough to make entry profitable. Hence, buyer’s fragmentation increases the likelihood of exclusion (by miscoordination).

4.6 Growing Markets

In this Section we discuss the case where buyers are asymmetric and the second buyer is larger than the first one. This may reflect situations where the product is new and demand is expected to grow over time.

We have pointed out in the previous Section that, if the size of the second buyer is large enough for the rival to achieve efficient scale, then predation cannot occur. In this respect, growing markets limit the scope for inefficient exclusion.

Instead, if the second period demand is insufficient to reach efficient scale, than a priori one cannot tell whether or not predation becomes more likely as second period demand expands. The reason is that an expansion in the size of the second buyer allows both suppliers to extract more revenues from B_2, once secured B_1, thereby inducing a more aggressive bidding for the first buyer by both suppliers.

To see this point more formally, let us assume that buyers’ demands are, respectively, $1 - k$ units for B_1 and $1 + k$ units for B_2, with $k \in [0, 1]$. Let us restrict attention to the case where the $1 + k$ units contestable in the second period are insufficient for the rival to produce more
efficiently than the incumbent:

\[C_R(q_R + 1 + k) - C_R(q_R) > C_I(q_I + 1 + k) - C_I(q_I). \] \((A2') \)

Note that there exists a critical size of the second buyer \(1+k^* \) such that the above condition does hold if the size of the second buyer is below the threshold level. This result follows from the fact that, by assumption \(A2 \), the above condition is satisfied when \(k = 0 \) and buyers are symmetric. Instead, when \(k = 1 \), the above condition cannot be satisfied as it would contradict assumption \(A1 \), i.e. that that firm \(R \) is more efficient than the incumbent on the entire production. Following the same logic of Section 3 one can easily show that, when \(k < k^* \), then predatory pricing and inefficient exclusion take place if (and only if) firm \(R \)'s cost advantage is not too large, i.e. iff

\[C_R(q_R + 2) - C_R(q_R) > C_P(k) \]

where:

\[C_P(k) \equiv C_I(q_I + 2) - C_I(q_I) - [C_R(q_R + 1 + k) - C_R(q_R) - (C_I(q_I + 1 + k) - C_I(q_I))]. \] \((11) \)

The term in squared brackets in the expression of \(C_P(k) \) indicates the additional revenues that the incumbent extracts from the second buyer (once secured the first one) relative to the rival. Without imposing restrictions on the slope of the cost functions, one cannot tell whether such a term increases or not as \(k \) increases, and then whether inefficient exclusion becomes more or less likely as buyers' asymmetry increases. The only possible claim is that the threshold \(C_P(k) \) is increasing in \(k \) - and thus exclusion becomes less likely as the second period demand expands - for values of \(k \) sufficiently close to \(k^* \).

4.7 A stream of \(N \) buyers

The model presented in Section 2 assumes that there are two buyers. Qualitative results would remain unchanged if one assumes that there are \(N > 2 \) buyers/markets that are approached sequentially, with the rival being more efficient than the incumbent in the production of the \(N \) total units, but having larger incremental costs than the incumbent on the first \(z \) units. If the rival’s cost advantage over the entire production is not strong enough, then the incumbent will price aggressively on early \(z \) buyers and will exclude the more efficient rival.

4.8 Downstream competition

We have assumed so far that buyers are final consumers. This is not necessarily an innocent assumption in exclusionary models, as showed by Fumagalli and Motta (2006, 2008). When buyers are firms that are competing in a downstream market, we cannot assume any longer that the number of units they buy from their chosen supplier is fixed. In particular, consider the case where downstream markets are fully integrated, buyers are retailers and are perceived as homogeneous by final consumers. Then, the buyer-retailer who pays the lower wholesale price will be able to win the entire market demand. In turn, this means that the incumbent cannot profitably exclude firm \(R \). The intuition is that even if the first buyer has committed to buy from the incumbent at a certain wholesale price, the rival firm may guarantee itself enough scale

34 It is easy to show that in the particular example of entry deterrence examined in Section 3.1 predation is unambiguously more difficult as \(k \) increases.

35 Proof available from the authors upon request.
to operate more efficiently than \(I \) by selling to the second buyer at a slightly lower price. Hence, even though the incumbent secured the first buyer, firm \(R \) does not suffer any disadvantage when competing for \(B_2 \) and the incumbent cannot take advantage of more favourable rents extraction from the second buyer. In turn, this implies that the incumbent has no incentive to bid more aggressively than firm \(R \) for the first buyer. Note also that, when competition is so fierce, the incumbent cannot recoup losses if it sells below-cost to the first buyer. This buyer would dominate the downstream market and the incumbent could not make profits on the second buyer. For these reasons, inefficient exclusion does not occur if there is sufficiently fierce downstream competition. If, instead, downstream firms are highly differentiated, or operate in independent markets (i.e. downstream competition is absent or weak), then the predatory outcome would continue to arise (as long as the rival cost advantage is not too large): each buyer could bring only a limited share of the total market to firm \(R \), and if the incumbent managed to win the first buyer, the second buyer’s order alone would no suffice for the rival to reach efficient scale.

4.9 Renegotiation

In the predatory equilibrium both buyers choose the incumbent even though the rival could supply the two units at lower costs. This raises the question of whether the predatory equilibrium would survive to the possibility of renegotiating the buyers’ decisions. In our model, where transactions take place immediately after each buyer’s decision, renegotiation is impossible. Also in a context where transactions take place only after the choice of both buyers, there might be little scope for renegotiation. For instance, renegotiation might require some form of agreement/coordination between suppliers and anti-trust laws might prohibit or impose restrictions to this type of behaviour. Alternatively, renegotiation costs might be high because breaching the initial decision may involve substantial legal costs or because of the costs of delaying consumption and production until a new agreement is reached. In an extension of our model, we consider an environment where, instead, transactions take place after the choice of both buyers and there are no renegotiation costs. We assume that the incumbent and the rival can contract upon whether the incumbent will release the buyer(s) who had chosen it. With a probability \(\beta \) it is the incumbent firm which sets the penalty that it should receive for the rival to supply its buyers, and with probability \(1 - \beta \) it is the rival that makes the offer. (Like in the rest of the paper, we assume that buyers do not take strategic decisions.) We show in Appendix [A.1] that, as one would expect from efficient renegotiation, the buyers will always be eventually served by the more efficient rival. An equilibrium where both buyers initially choose the incumbent still arises - sustained by the incumbent’s having enough bargaining power and therefore being able to extract part of the gain from renegotiation - but of course this equilibrium would never involve exclusion. There is also another equilibrium - which takes place when the entrant has sufficient bargaining power - where both buyers choose the more efficient supplier from the very beginning.
5 Demand-side scale economies

In this Section we show that the mechanism identified in Section 3 may rationalize predation also when scale economies arise from the demand side and are due to network externalities (Section 5.1) or multi-sided market externalities (Section 5.2).

5.1 Network Externalities

Assume that the incumbent and the rival are equally efficient in producing two differentiated and incompatible network products, and have a constant unit cost equal to c. Each manufacturer has an installed base of customers b_i with $i = I, R$, i.e. old customers who are not buying any longer, but continue to use the network product. Also in this case we assume that the incumbent enjoys an *incumbency advantage* and can rely on a larger customer base than the rival: $b_I > b_R \geq 0$.

There are two new (cohort of) buyers, B_1 and B_2, who enjoy utility $U_i = v_i(n_i) - p_i$ if they buy one unit of the network product from firm $i = I, R$, where $n_i \in N^+$ indicates the total number of users (including present and past buyers). There are direct network externalities in that the utility enjoyed by a user of network i increases with the total number of users of that network: $v_i'(n_i) \geq 0$, with the utility of the rival’s network being strictly increasing in the number of users. Finally, similarly to the analysis of Section 3, we assume that the combination of network externalities and the incumbency advantage results in the following feature: even though at full size (i.e. when both of the new buyers add to it) the quality of the rival’s network is superior to the incumbent’s (assumption A_1^*), with only one new buyer the quality of firm R’s product is inferior (assumption A_2^*):

\[
\begin{align*}
&v_R(b_R + 2) > v_I(b_I + 2) \quad \text{(A1*)} \\
&v_I(b_I + 1) > v_R(b_R + 1) \quad \text{(A2*)}
\end{align*}
\]

The game is as follows.

1. First period.
 (a) Firms I, R simultaneously set prices p_I^1 and p_R^1 to the first buyer. (b) B_1 decides from whom to buy.

2. Second period.
 (a) Firms I, R simultaneously set prices p_I^2 and p_R^2 to the second buyer. (b) B_2 decides from whom to buy.

3. Third period.
 Consumption takes place and utilities are realized.

The following Proposition shows that also in this case - if the quality gap between the rival’s and the incumbent’s network at full size is not too large - by pricing below cost the incumbent

\[36\]Think, for instance, of a situation where the incumbent has exhausted network externalities so that new users do not increase anymore individual utility. Instead the utility of the rival’s product, having a smaller customer base, responds intensively to new users. In such a context, adding two new (cohorts) of buyers may allow the rival’s network to become superior to the incumbent’s, but adding a single one may not suffice.
can exclude the more efficient supplier. The intuition behind this result is similar to the case of supply side scale economies. Competition for the first buyer will be particularly intense because who secures the first buyer will supply also the second. The fact that at full size the quality of the rival’s network is superior represents an advantage for firm R when competing for B_1. However the fact that one buyer is insufficient for firm R to reach efficient scale may allow the incumbent to extract more rents than the rival from the second buyer which - *ceteris paribus* - makes the incumbent more aggressive when competing for B_1. When this latter effect dominates, the incumbent secures the first buyer and excludes the more efficient rival. Similarly to the model with supply-side scale economies, also in this case the stronger the incumbency advantage - i.e. the higher b_I or the lower b_R - the more likely predation to arise at the equilibrium.

Proposition 2. There exists a threshold level v_P of the utility of firm R’s network, with $v_P > v_I(b_I + 2)$ such that:

- **(Predation)** If $v_R(b_R + 2) < v_P$, then the incumbent supplies both buyers. It sells below cost to the first buyer, while recouping losses on the second buyer.

- **(Entry/Expansion)** If $v_R(b_R + 2) \geq v_P$, then firm R supplies both buyers. The price paid by the first buyer is lower than the price paid by the second.

The threshold v_P is (weakly) increasing in b_I and (strictly) decreasing in b_R.

Proof. See Appendix A.2

A distinction with the case of supply-side scale economies that is worth emphasizing is that, under network externalities, exclusion of the more efficient producer is not necessarily welfare detrimental. The reason is that old customers, who are still using the incumbent’s product, benefit when the new buyers join the incumbent’s network. Their welfare gain may be large enough to dominate both the efficiency loss associated to the fact that new buyers use the inferior product and the loss suffered by the old customers of the rival due to the lack of expansion of their network. When this is the case, i.e. when

$$ b_I[v_I(b_I + 2) - v_I(b_I)] > 2[v_R(b_R + 2) - v_I(b_I + 2)] + b_R[v_R(b_R + 2) - v_R(b_R)] \tag{12} $$

below-cost pricing excludes the more efficient producer but is welfare beneficial.

In a similar vein, it may be that the incumbent excludes a *less* efficient rival but this is welfare *detrimental*. Consider the case where firm R’s network is inferior even at full size. The incumbent will always secure both buyers because not only more favourable rent extraction but also superior quality of the own network make it a stronger competitor. Also, the incumbent does not necessarily need to price below cost in order to exclude the rival. Still exclusion of the inefficient producer may be welfare detrimental. This is the case when the welfare loss suffered by the old customers of the rival, who fail to experience an expansion in their network, dominates both the efficiency gain due to new buyers using the higher quality product and the welfare gain of the incumbent’s old customers. Note that this situation is more likely to arise when the size of the incumbent’s network is large enough to exhaust the externality generated by additional
users. In such a case society may benefit from the expansion of an alternative, though inferior, network and exclusion of the less efficient supplier may be welfare detrimental.

5.2 Two-sided markets

In this Section we consider the case where each firm (or platform) can sell its product to two different groups of consumers, each group (or side of the market) benefiting from positive externalities from the number of users on the other side. We assume that a consumer on side \(k \) and using product \(i \) will receive a utility \(U_{ki} = v_{ki}(n_{li}) - p_{ki} \), with \(k, l = 1, 2, k \neq l, i = I, R \), with \(n_{li} \) being the total number of users (both old and new buyers) of platform \(i \) on side \(l \) and with \(v_{ki}'(n_{li}) \geq 0 \). Platforms are incompatible.

The incumbent and the rival have a constant unit cost \(c \). Each platform has an installed base of old customers \(b_{ki} \) with \(k = 1, 2, i = I, R \), who are not buying any longer, but continue to use the product. For simplicity, we assume that a given platform has the same customer base on each side: \(b_{1I} = b_{2I} = b_I \) and \(b_{1R} = b_{2R} = b_R \), with the incumbency advantage amounting to \(b_I > b_R \geq 0 \). We also assume that \(v_{1i}(\cdot) = v_{2i}(\cdot) = v_i(\cdot) \), with \(i = I, R \).

When the game starts, there are two new buyers, \(B_1 \) and \(B_2 \), one on each side of the market, who are taking purchase decisions sequentially.

Finally, similarly to the previous sections, we assume that the rival is overall more efficient but it has an initial disadvantage:

\[
\begin{align*}
v_R(b_R + 1) &> v_I(b_I + 1) \\
v_I(b_I) &> v_R(b_R)
\end{align*}
\]

The game is the usual one, with firms first competing for \(B_1 \) and then for \(B_2 \).

The following can be showed:

Proposition 3. There exists a threshold level \(v'_p \) with \(v'_p > v_I(b_I + 1) \) such that:

- **(Predation)** If \(v_R(b_R + 1) < v'_p \), then the incumbent supplies both buyers. It sells below cost to the first buyer, while recouping losses on the second buyer.

- **(Entry/Expansion)** If \(v_R(b_R + 1) \geq v'_p \), then firm \(R \) supplies both buyers. The price paid by the first buyer is lower than the price paid by the second.

The threshold \(v'_p \) is weakly increasing in \(b_I \) and strictly decreasing in \(b_R \).

Proof. See Appendix A.3

\[37\] The paper by Farrell and Katz (2005) shares some similarities with our analysis. They also investigate price competition in an environment with network externalities. Both in our setting and theirs, denying sales to the rival in early periods weakens its ability to compete in later periods by making the rival’s product less attractive to consumers. Below-cost pricing in early periods is then a natural outcome of price competition. However, the focus of the analysis is different in the two studies. Our purpose is to identify under which conditions below-cost pricing harms welfare by leading to the exclusion of a more efficient producer. Rather than attempt to separate ‘predatory’ from ‘non-predatory’ behaviour, their focus is instead on the effect of the imposition of price floors (such as a ban on below-cost pricing) on market outcomes and welfare. Their main finding is that whether such rules are welfare detrimental or not depends sensitively on the way consumers form expectations on other consumers’ behaviour.

23
An application of this model can be used to rationalize the NAPP case briefly described in
the introduction.38 In that case, firms were selling to hospitals (our side-1) and to the community
segment (side-2). While hospitals’ utility was not influenced by decision in the community
segment, community decisions were heavily affected by hospitals’. In terms of our model, we
would have $v_{1i}(\cdot) = v_i$ while $v_{2i}(n_{1i})$.

6 Conclusions

We have presented a simple theory of predation which is based on the presence of scale economies
(either on the supply- or the demand-side). The prey would need to reach a certain scale of
operations in order to be viable. Knowing this, the incumbent-predator would have an incentive
to incur losses on early buyers (or markets), so as to deprive the prey of the scale it needs, thus
reducing competition on later buyers (or markets), where the incumbent could then set higher
prices. Consistent with the standard description of predatory pricing, our model predicts that
in an exclusionary (predatory) equilibrium, a profit sacrifice phase is followed by a recoupment
phase.

Our paper provides competition agencies with a new theory of harm in predation cases,
and helps them identify situations where it is possible that predation based on this mechanism
may arise. An agency who believes that the present theory might apply to a given case should
necessarily show that the following factors co-exist in the industry:

- Economies of scale (whether due to fixed costs, learning effects, demand externalities or
 other reason) are important.

- There are strong incumbency advantages, which may be proxied by a high and persist-
 ent market share of the incumbent, possibly reinforced by switching costs and by the
 infrequency of purchases; or by asymmetries in the investment in a crucial infrastructure.

- Buyer power is weak. Indeed, predation hinges upon the ability to exploit the externality
 that earlier buyers will impose upon later ones, and this is possible only to the extent
 that buyers cannot take joint decision or cannot pool their orders into a single period.
 Furthermore, the existence of large buyers, whose demand is sufficient for the entrant/rival
 to achieve efficient scale, limits or indeed removes the scope for predation. By contrast,
 demand fragmentation may exacerbate the scope for predation.

- Downstream competition is weak.

- Intertemporal price discrimination is possible.

- The market is sufficiently mature: a rapidly growing market is one where the number of
 contestable buyers will be larger relative to the captive ones, making it easier for the prey
to reach minimum efficient scale.

38 Another case involving a two-sided market is Aberdeen Journals case (Decision of the Director General of
1009/1/1/02 of 23 June 2003.
Finally note that our model predicts that the incumbent must price below cost in order to exclude a more efficient rival. In this respect, and differently from existing theories, it provides some underpinning to the use of tests which compare the allegedly abusive price to some cost benchmark.

We do not claim that our predation theory replaces or generalizes the traditional theories of predation. In some cases, predation might be more likely motivated by the desire of an incumbent to build a reputation for aggressive behaviour or by the attempt of a well-funded dominant firm to make it more difficult for a new firm to obtain external funds. But in other cases, our scale-economies mechanism might fit the evidence better. Further, these rationales might co-exist: our theory does not exclude that an incumbent might want to deprive an actual entrant of the scale it needs while at the same time sending a message to other potential entrants that it is ready to do the same in the future; and being aggressive to an entrant to deprive it of the profits it needs might have the effect of reducing the entrant’s assets, and therefore making it more difficult for it to obtain funds in an imperfect capital market.\footnote{Consider the most important EC predation case, ECS/Akzo. (Commission Decision IV/30.698 of 14 December 1985. Published in OJ L 374, 31 December 1985.) According to the European Commission, Akzo started to prey upon its smaller rival ECS when the latter firm - previously limiting itself to sell organic peroxides as a flour additive in the UK - started to target a bigger market and made offers to BASF, one of the biggest clients of Akzo. The Decision reports - among other things, including some documentary evidence of a predation plan - instances of Akzo’s making below-cost offers to ECS most important business clients, with serious effects on ECS, that was unable to make the investments in capacity and R&D necessary to expand its operations, and was obliged to increase its bank borrowings thereby incurring additional costs (see para. 50). A reputation motive might also be present, with Akzo conveying the signal to potential entrants that it would not have tolerated threats to its most important markets (see para. 86).}

References

A Appendix

A.1 Renegotiation

The timing of the game is as follows.

1. Firms make price offers p_{I1}, p_{R1} to B_1; B_1 decides

2. Firms make price offers p_{I2}, p_{R2} to B_2; B_2 decides.

3. Renegotiation may take place.

4. Transactions take place and utilities are realized.

It is important that transactions do not take place immediately after each buyer’s decision, otherwise there would be no scope for renegotiation. It is also key to model renegotiation. We assume the following process: with a probability β, the incumbent firm make a take-it-or-leave-it offer to the rival firm, fixing the penalty t that rival firm R would have to pay if it wanted to serve one or more buyers that had chosen to buy from I. With a probability $1 - \beta$, it is the rival firm which makes a take-it-or-leave it offer to firm I specifying the penalty. For simplicity, we assume that buyers play no active role here (as in the base model), and they agree to breach the initial contract as long as they receive a weakly lower price offer.

A.1.1 Solving the model: renegotiation stage (stage 3.)

Both B_1 and B_2 accepted to buy from the incumbent at prices p_{I1}, p_{I2}. If renegotiation did not take place, firms would receive profits $\pi^0_I = p_{I1} + p_{I2} - [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)]$ and $\pi^0_R = 0$ respectively. Therefore, renegotiation profits must be: $\pi^{r12}_I = \pi^0_I + \beta S$ and $\pi^{r12}_R = \pi^0_R + (1 - \beta)S$, where

$$S = [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)].$$

After substitution, renegotiation profits can be rewritten as:

$$\pi^{r12} = p_{I1} + p_{I2} - [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] + \beta([C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)]),$$

$$\pi^{r12}_R = (1 - \beta) ([C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)].$$

B_1 chose the rival and B_2 chose the incumbent at prices p_{R1}, p_{I2}. If renegotiation did not take place, firms would receive profits $\pi^0_I = p_{I2} - [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)]$ and $\pi^0_R = p_{R1} - [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)]$ respectively. Therefore, renegotiation profits will be $\pi^{r21}_I = \pi^0_I + \beta S$ and $\pi^{r21}_R = \pi^0_R + (1 - \beta)S$, where:

$$S = [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)].$$
After substitution, renegotiation profits can be rewritten as:

\[
\pi^{\text{r}2}_I = p_{I2} - [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] + \\
+ \beta (\pi^I) + C_I(\bar{q}_I) + [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)],
\]

\[
\pi^{\text{r}2}_R = p_{R1} + (1 - \beta) ([C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)]) + \\
- \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)].
\]

B₁ chose the incumbent and B₂ chose the rival prices \(p_{I1}, p_{R2}\). The case where it is the first buyer who accepted the offer of the incumbent, and the second that of the entrant, is perfectly symmetric to the previous one. Renegotiation profits will be:

\[
\pi^{\text{r}1}_I = p_{I1} - [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] + \\
+ \beta (\pi^I) + C_I(\bar{q}_I) + [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)],
\]

\[
\pi^{\text{r}1}_R = p_{R2} + (1 - \beta) ([C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)]) + \\
- \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)].
\]

Both buyers chose to buy from the rival at prices \(p_{R1}, p_{R2}\). In this case there is no scope for renegotiation. The suppliers’ payoffs are:

\[
\pi^{\text{r}0}_I = 0,
\]

\[
\pi^{\text{r}0}_R = p_{R1} + p_{R2} - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)].
\]

Now that we have obtained the firms’ payoffs after efficient renegotiation, we can move backwards to the buyers’ decisions.

A.1.2 Competition for \(B₂\) (stage 2.)

If **\(B₁\) bought from the incumbent** Suppose the first buyer chose I. If \(B₂\) chooses the incumbent as well, firms’ anticipated profits would be those corresponding to the case where renegotiation involves both buyers, i.e., \(\pi^{\text{r}12}_I\) and \(\pi^{\text{r}12}_R\). If instead \(B₂\) chooses the rival firm, then firms anticipate that their payoffs would be those corresponding to only \(B₁\) renegotiating, i.e., \(\pi^{\text{r}1}_I\) and \(\pi^{\text{r}1}_R\). When bidding for \(B₂\), the valuation of the two firms will therefore be:

\[
\theta^2 = \pi^{\text{r}12}_I - \pi^{\text{r}1}_I = p^*_2 - \beta [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] - (1 - \beta) [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1)],
\]

\[
\theta^2_R = \pi^{\text{r}12}_R - \pi^{\text{r}1}_R = p^*_2 - \beta [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] - (1 - \beta) [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1)].
\]

Note that firms have exactly the same valuation for the second buyer, so at equilibrium it will be:

\[
p^*_2 = p^*_2 = \beta [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] + (1 - \beta) [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1)].
\]

If **\(B₁\) bought from the rival** Suppose the first buyer chose R. If \(B₂\) chooses the incumbent, firms’ anticipated renegotiation profits would be \(\pi^{\text{r}2}_I\) and \(\pi^{\text{r}2}_R\). If instead \(B₂\) chooses from R as well, then there would be no room for renegotiation since the productively efficient outcome is achieved by the rival serving both buyers. In this case, profits would be \(\pi^{\text{r}0}_I = 0\) and \(\pi^{\text{r}0}_R = \)
\[p^*_R - p^*_I = [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)]. \] When bidding for \(B_2 \), the valuation of the two firms will be:

\[\theta^2_I = \pi^2_I - \pi^0_I = p_I - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)] - (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)], \]

\[\theta^2_R = \pi^0_R - \pi^2_R = p_R - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)] - (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)]. \]

As before, firms have the same valuation for the second buyer. At equilibrium:

\[p^*_I = p^*_R = \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)] + (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)]. \]

A.1.3 Competition for \(B_1 \) (stage 1.)

For simplicity, let us assume the tie-breaking rule that, when indifferent, the second buyer makes the same choice as the first one. Then, if \(B_1 \) chooses the incumbent, firms will earn \(\pi^{12} \) and \(\pi^{01} \). If instead \(B_1 \) chooses the rival, firms will earn \(\pi^0_1 = 0 \) and \(\pi^0_R \). We can now find the firms’ valuation for \(B_1 \). For firm \(I \), it will be:

\[\theta^1_I = \pi^{12} - \pi^0_I = p_I + p^{12}_I - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)] - (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] = \]

\[= p_I - (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)]. \]

For firm \(R \), it will be:

\[\theta^1_R = \pi^0_R - \pi^{12} = \]

\[= p_R - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)] + (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)]. \]

From \(\theta^1_I \) and \(\theta^1_R \), we obtain the lowest price offers \(\theta_{IR} \) and \(\theta_{RI} \) that firms are willing to offer to \(B_1 \):

\[\theta_{IR} = (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] + \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)] \]

\[\theta_{RI} = (1 - \beta) [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1)] + \beta [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)]. \]

The firm which can afford the lowest price offer will win \(B_1 \). It is easy to show that \(\theta_{RI} < \theta_{IR} \) if and only if:

\[\beta < \frac{2[C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)]}{2[C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] - [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I)] + 2[C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)] - [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R)]} \equiv \beta^* \]

Hence, when \(\beta < \beta^* \), the rival secures the two buyers offering \(p^{*1}_R = p^{*2}_R = (1 - \beta) [C_I(\bar{q}_I + 1) - C_I(\bar{q}_I)] + \beta [C_R(\bar{q}_R + 2) - C_R(\bar{q}_R + 1)] \). When, instead, \(\beta \geq \beta^* \) the incumbent secures the two buyers offering \(p^{*1}_I = p^{*2}_I = (1 - \beta) [C_I(\bar{q}_I + 2) - C_I(\bar{q}_I + 1)] + \beta [C_R(\bar{q}_R + 1) - C_R(\bar{q}_R)]. \) However, no exclusion takes place in the latter case, as renegotiation will follow.
A.2 Proof of Proposition 2

Proof. Let us move by backward induction. The outcome of competition for the second buyer, B_2, depends on the choice made by the first one. Let us consider first the subgame following B_1 choosing the incumbent. From assumption $A2^*$ and from $v_I(n_i)$ being (weakly) increasing in the total number of users, it follows that the quality of the incumbent’s network when B_2 joins is superior to the quality of the rival’s network when B_2 joins:

$$v_I(b_I + 2) \geq v_I(b_I + 1) > v_R(b_R + 1)$$

(13)

Hence, in order to attract B_2, the rival should discount the incumbent’s price by an amount equal to the quality gap between the two network products: $p^R_2 < p^R_2 - [v_I(b_I+2) - v_R(b_R+1)]$. Bertrand competition results in the incumbent serving B_2 at a price $p^R_2 = c + v_I(b_I + 2) - v_R(b_R + 1)$.

If, instead, B_1 chose the rival, from assumption $A1^*$ and from $v'_I(n_i) \geq 0$, it follows that for the second buyer the quality of the rival’s network is superior to the incumbent’s:

$$v_R(b_R + 2) > v_I(b_I + 2) \geq v_I(b_I + 1)$$

(14)

In this case it is the incumbent that suffers a competitive disadvantage and must offer a discount in order to attract B_2: $p^I_2 < p^I_2 - [v_R(b_R+2) - v_I(b_I+1)]$. In equilibrium, the rival supplies the second buyer at a price $p^R_2 = c + v_R(b_R + 2) - v_I(b_I + 1)$.

Let us move to the first period. Agents anticipate that the second buyer will follow the choice of the first one. Hence, B_1 is willing to address the incumbent if (and only if) $v_I(b_I + 2) - p^I_2 > v_R(b_R + 2) - p^R_1$. By assumption $A1^*$, at full size the rival’s network exhibits higher quality than the incumbent’s. This represents a disadvantage for the incumbent when competing for B_1 and calls for a discount relative to firm R’s price in order to win B_1: $p^I_1 < p^R_1 - [v_R(b_R+2) - v_I(b_I+2)]$.

However, the supplier who wins the first buyer will win also the second, thereby obtaining a total profit equal to:

$$\pi_i = p^I_i + p^R_i - 2c$$

(15)

with $i = I, R$. We can thus denote as $\bar{c}_i = 2c - p^*_i = c - [v_I(b_i + 2) - v_I(b_j + 1)]$ with $i \neq j = I, R$ each firm’s ‘adjusted cost’ to supply the first buyer, which corresponds to the total cost to supply the two buyers diminished by the rents extracted from the second one. Note that, even though higher quality at full size favours rents extraction by the rival, the fact that one buyer is insufficient for firm R to achieve efficient scale is favourable to the incumbent. If the latter effect is sufficiently strong, the incumbent extracts more rents than the rival from the second buyer and may manage to win the first buyer despite the discount it has to offer. This is the case if (and only if):

$$\bar{c}_I < \bar{c}_R - [v_R(b_R + 2) - v_I(b_I + 2)]$$

(16)

which is equivalent to

$$v_R(b_R + 2) < v_I(b_I + 2) + \frac{v_I(b_I + 1) - v_R(b_R + 1)}{2} \equiv v_P$$

(17)

with $v_P > v_I(b_I + 2)$ by assumption $A2^*$.

It follows that when $v_R(b_R + 2) < v_P$, the incumbent wins B_1 and sells at a price $p^R_1 = \tilde{c}_R - [v_R(b_R + 2) - v_I(b_I + 2)] = c - [v_R(b_R + 2) - v_I(b_I + 1)] - [v_R(b_R + 2) - v_I(b_I + 2)] < c$ by assumptions $A1^*$. If instead $v_R(b_R + 2) \geq v_P$, then firm R secures B_1 and sells at a price $p^R_2 = \tilde{c}_I + [v_R(b_R + 2) - v_I(b_I + 2)] = c - [v_I(b_I + 2) - v_R(b_R + 1)] + [v_R(b_R + 2) - v_I(b_I + 2)]$. □
A.3 Proof of Proposition 3

Proof. Proceed by backward induction and consider the second period. (a) If in the first period B_1 bought from I, then B_2’s utility from buying from I and from R respectively will be: $U_{2I} = v_I(b_I + 1) - p_I^2$ and $U_{2R} = v_R(b_R) - p_R^2$. Note that B_2 enjoys the additional benefit from one extra user on side-1 if she buys from I, but not from R. From assumption $A2^*$ and from $v_I(n_i)$ being (weakly) increasing in the total number of users, it follows that in order to attract B_2 the rival must offer a sufficiently large discount as compared to the incumbent’s price: $p_R^2 < p_I^2 - [v_I(b_I + 1) - v_R(b_R)]$. Bertrand competition results in the incumbent serving B_2 at a price $p_I^2 = c + v_I(b_I + 1) - v_R(b_R)$. (b) If in the first period B_1 bought from R, then B_2’s utility from buying from I and from R respectively will be: $U_{2I} = v_I(b_I) - p_I^2$ and $U_{2R} = v_R(b_R + 1) - p_R^2$. This time, B_2 enjoys the additional benefit from one extra user on side-1 if she buys from R. From assumption $A1^*$ and from $v_I'(n_i) \geq 0$, it follows that it is the incumbent that suffers a competitive disadvantage and must offer a discount to attract B_2: $p_R^2 < p_I^2 - [v_R(b_R + 1) - v_I(b_I)]$. In equilibrium, the rival supplies B_2 at a price $p_R^2 = c + v_R(b_R + 1) - v_I(b_I)$.

Consider now competition for B_1. Agents anticipate that the second buyer will follow the choice of the first one. Hence, B_1 is willing to buy from the incumbent if (and only if) $v_I(b_I + 1) - p_I^1 > v_R(b_R + 1) - p_R^1$. By assumption $A1^*$, overall efficiency represents an advantage for firm R when competing for B_1 and the incumbent must offer a discount relative to firm R’s price in order to win B_1: $p_I^1 < p_R^1 - [v_R(b_R + 1) - v_I(b_I + 1)]$. However, the platform that serves the side-1 buyer will also serve the side-2 buyer, thereby making total profits $\pi_i = p_I^1 + p_I^2 - 2c_i$ with $i = I, R$. Also in this case we can denote as $\tilde{c}_i = 2c - p_i^2 = c - [v_i(b_i + 1) - v_j(b_j)]$, with $i \neq j = I, R$, each firm’s ‘adjusted cost’ to supply the first buyer. Again, higher overall efficient favours rents extraction by the rival, but the initial advantage is favourable to the incumbent. If the latter effect is sufficiently strong, the incumbent extracts more rents than the rival from the second buyer and may manage to win the first buyer despite the discount it has to offer. This is the case if (and only if):

$$\tilde{c}_I < \tilde{c}_R - [v_R(b_R + 1) - v_I(b_I + 1)]$$

which is equivalent to

$$v_R(b_R + 1) < v_I(b_I + 1) + \frac{v_I(b_I) - v_R(b_R)}{2} \equiv v_P'$$

with $v_P' > v_I(b_I + 1)$ by assumption $A2^*$.

Then, when $v_R(b_R + 1) < v_P'$, platform I wins competition for B_1 and sells at a price $p_I^1 = \tilde{c}_R - [v_R(b_R + 1) - v_I(b_I + 1)] = c - [v_R(b_R + 1) - v_I(b_I)] - [v_R(b_R + 1) - v_I(b_I + 1)] < c$ by assumptions $A1^*$. When instead $v_R(b_R + 1) \geq v_P'$ it will be platform R which obtains B_1, with $p_R^1 = \tilde{c}_I + [v_R(b_R + 1) - v_I(b_I + 1)] = c - [v_I(b_I + 1) - v_R(b_R)] + [v_R(b_R + 1) - v_I(b_I + 1)]$. \qed